## CAN + LDO + HS Driver System Basis Chip

The system basis chip (SBC) NCV7450 integrates +5 V / 250 mA LDO with a high–speed CAN transceiver and one high–side driver with diagnostics, directly controlled by dedicated pins.

## Features

- 5 V ±2% / 250 mA LDO
  - Current Limitation
  - Output Voltage Monitoring
- One High-Speed CAN Transceiver
  - Current Limitation, Reverse Current Protected
  - Compliant to ISO11898–2:2016
  - TxDC Time-out
- One High–Side Driver
  - Rdson =  $300 \text{ m}\Omega @ 25^{\circ}\text{C}$
  - Current Limitation
  - Diagnostic Output
  - Over–Current Protection
  - Under–Load Detection
- Direct Control
- Window Watchdog
- Two-level Thermal Shutdown Protection
- AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

## **Typical Applications**

- Automotive
- Industrial Networks



## **ON Semiconductor®**

www.onsemi.com









| NCV7450 = | = Specific Device Code |
|-----------|------------------------|
|-----------|------------------------|

= Wafer Lot

А

I.

Υ

W

= Year

= Work Week

= Pb-Free Package

#### ORDERING INFORMATION

| Device        | Package                 | Shipping <sup>†</sup> |
|---------------|-------------------------|-----------------------|
| NCV7450DB0R2G | TSSOP16-EP<br>(Pb-Free) | 4000 / Tape &<br>Reel |

<sup>+</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

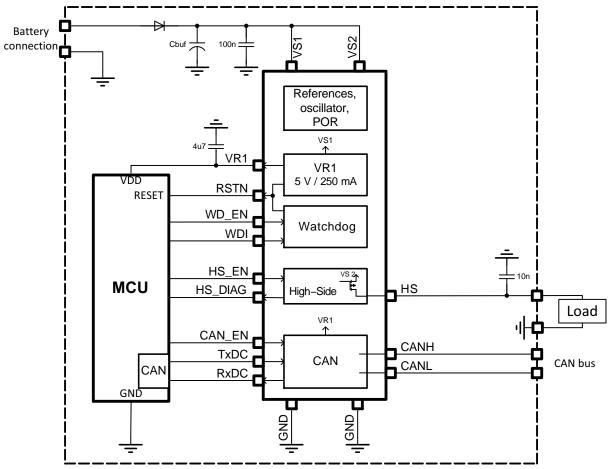



Figure 1. Simplified Application Diagram

#### Table 1. PIN DESCRIPTION

| Pin<br>No. | Pin Name | Pin Type<br>(LV = Low Voltage; HV = High Voltage) | Description                                                        |
|------------|----------|---------------------------------------------------|--------------------------------------------------------------------|
| 1          | VR1      | LV supply output                                  | Output of the 5 V / 250 mA low-drop regulator                      |
| 2          | WD_EN    | LV digital input; internal pull-up current        | Watchdog disable input                                             |
| 3          | RSTN     | LV digital output; open drain; internal pull-up   | Reset signal to the MCU                                            |
| 4          | TxDC     | LV digital input; internal pull-up                | CAN transmitter data input                                         |
| 5          | HS_DIAG  | LV digital output; push-pull                      | HS driver diagnostic output (active Low)                           |
| 6          | RxDC     | LV digital output; push-pull                      | CAN receiver data output                                           |
| 7          | WDI      | LV digital input; internal pull-down              | Watchdog trigger input                                             |
| 8          | HS_EN    | LV digital input; internal pull-down              | HS driver enable input                                             |
| 9          | CAN_EN   | LV digital input; internal pull-down              | CAN transceiver enable input                                       |
| 10         | GND      | Ground connection                                 | Ground supply (all GND pins have to be connected externally)       |
| 11         | CANH     | CAN bus interface                                 | CANH line of the CAN bus                                           |
| 12         | CANL     | CAN bus interface                                 | CANL line of the CAN bus                                           |
| 13         | GND      | Ground connection                                 | Ground supply (all GND pins have to be connected externally)       |
| 14         | HS       | HV output; high-side                              | High-side driver output                                            |
| 15         | VS2      | HV supply input                                   | Main supply input (HS Driver), keep floating if HS driver not used |
| 16         | VS1      | HV supply input                                   | Main supply input (VR1, logic)                                     |
|            | EP       | Exposed pad                                       | Substrate (has to be connected to all GND pins externally)         |

#### **Table 2. MAXIMUM RATINGS**

| Symbol     | Rating                                                                   |                                                           | Min  | Max                                        | Unit |
|------------|--------------------------------------------------------------------------|-----------------------------------------------------------|------|--------------------------------------------|------|
| Vmax_VS1   | DC Power Supply Voltage (Note 1)                                         | -0.3                                                      | 40   | V                                          |      |
| Vmax_VS2   | DC Power Supply Voltage (Note 1)                                         |                                                           | -0.3 | 40                                         | V    |
| Vmax_HS    | DC High-side driver Voltage                                              |                                                           | -0.3 | VS2+0.3                                    | V    |
| Vmax_digIO | DC voltage on digital pins<br>(CAN_EN, WD_EN, WDI, RSTN, RxDC, TxDC, HS_ | _EN, HS_DIAG)                                             | -0.3 | VR1+0.3                                    | V    |
| Vmax_CAN   | DC voltage on pin CANH and CANL                                          |                                                           | -40  | 40                                         | V    |
| Vmax_diff  | Differential DC voltage between any two pins (incl. C                    | ANH and CANL)                                             | -40  | 40                                         | V    |
| Vmax_VR1   | LDO Supply pin output voltage                                            |                                                           | -0.3 | 6 or<br>VS1+0.3<br>(whichever<br>is lower) | V    |
| Tj         | Junction Temperature Range                                               | -40                                                       | 150  | °C                                         |      |
| Tstg       | Storage Temperature Range                                                |                                                           | -55  | 150                                        | °C   |
| V_ESDHBM   | ESD Capability, Human Body Model (Note 2)                                | ility, Human Body Model (Note 2) All pins                 |      | +4                                         | kV   |
| V_ESDHBM   | ESD Capability, Human Body Model (Note 2)                                | , Human Body Model (Note 2) Pins VS1/2, CANH,<br>CANL, HS |      | +5                                         | kV   |
| V_ESDMM    | ESD Capability, Machine Model (Note                                      | 2)                                                        | -250 | +250                                       | V    |
| V_ESDCDM   | ESD Capability, Charged Device Model (N                                  | lote 2)                                                   | -750 | +750                                       | V    |
| V_ESDIEC   | System ESD Capability (Note 2), pins VS, CANH                            | I, CANL, HS                                               | -6   | +6                                         | kV   |
|            |                                                                          | Test pulse 1                                              | -100 |                                            | V    |
|            | Voltage transients per ISO7637 – 3, Class D, pins VS,                    | Test pulse 2a                                             |      | +75                                        | V    |
| V_SCHAF    | CANH and CANL                                                            | Test pulse 3a                                             | -150 |                                            | V    |
|            |                                                                          | Test pulse 3b                                             |      | +100                                       | V    |
| MSL        | Moisture Sensitivity Level                                               |                                                           |      | 2                                          | -    |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

This device series incorporates ESD protection and is tested by the following methods: Device ESD Human Body Model tested per AEC–Q100–002 (EIA/JESD22–A114)

Device ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)

Device ESD Charged Device Model tested per AEC-Q100-011 (EIA/JESD22-C101)

System ESD Human Body Mode tested per IEC61000-4-2 (150 pF, 330 Ω)

Latchup Current Maximum Rating: ≤150 mA per JEDEC standard: JESD78.

3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### **Table 3. THERMAL CHARACTERISTICS**

| Symbol                               | Rating                                                                                                                   | Value    | Unit |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------|------|
| R <sub>θJA</sub><br>R <sub>ψJA</sub> | Thermal Characteristics,<br>Thermal Resistance, Junction-to-Air (Note 4)<br>Thermal Resistance, Junction-to-Air (Note 5) | 54<br>81 | °C/W |
| R <sub>θJC</sub>                     | Thermal Characteristics,<br>Thermal Resistance, Junction-to-Case                                                         | 10.5     | °C/W |

4. Value based on test board according to JESD51-3 standard, signal layer with 10% trace coverage.

5. Value based on test board according to JESD51-7 standard, signal layers with 20% trace coverage, inner planes with 90% coverage.

#### Table 4. RECOMMENDED OPERATING RANGES

| Symbol         | Rating                                           | Min | Max | Unit |
|----------------|--------------------------------------------------|-----|-----|------|
|                | Functional supply voltage                        | 5   | 28  | V    |
| VS1            | Supply voltage for valid parameter specification | 6   | 18  | V    |
| 1/60           | Functional supply voltage                        | 4.3 | 24  | V    |
| VS2            | Supply voltage for valid parameter specification | 6   | 18  | V    |
| VR1            | VR1 LDO output voltage                           | 4.9 | 5.1 | V    |
| VdiglO         | Digital inputs/outputs voltage                   | 0   | VR1 | V    |
| HS             | High side driver voltage                         | 0   | VS2 | V    |
| CANH, CANL     | CAN bus pins voltage                             |     | VR1 | V    |
| TJ             | Junction Temperature                             | -40 | 150 | °C   |
| T <sub>A</sub> | Ambient Temperature                              | -40 | 125 | °C   |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

| Symbol            | Parameter                    | Conditions                                                                                                                                                           | Min | Тур | Max | Unit |
|-------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| VS1, VS2 Supply   |                              |                                                                                                                                                                      |     |     |     |      |
| VS_PORH           | VS1 POR threshold            | VS1 rising                                                                                                                                                           | 3.4 |     | 4.1 | V    |
| VS_PORL           | VS1 POR threshold            | VS1 falling                                                                                                                                                          | 2   |     | 3.5 | V    |
| ls1_off           | VS1 consumption, low-power   | VS1 = VS2 = 14 V, VR1 on (not loaded), HS load to GND, CAN bus recessive, CAN_EN = Low, HS_EN = Low, WD_EN = Low, Tj $\leq 85^{\circ}$ C                             |     | 25  |     | μA   |
| ls2_off           | VS2 consumption, low-power   | VS1 = VS2 = 14 V,HS load to GND,<br>HS_EN = Low, Tj $\leq$ 85°C                                                                                                      |     | 4   |     | μΑ   |
| ls_act            | VS1+VS2 consumption, active  | VS1 = VS2 = 14 V, VR1 on (loaded by 100 mA,<br>not included in Is_act), HS floating, CAN bus<br>recessive, CAN_EN = High, HS_EN = High,<br>WD_EN = High, TxDC = High |     | 10  | 20  | mA   |
| VS2_OV            | VS2 over-voltage             | HS_EN = High                                                                                                                                                         | 28  |     |     | V    |
| VS2_OV_hyst       | VS2 over-voltage hysteresis  | HS_EN = High                                                                                                                                                         |     | 1   |     | V    |
| Tfilt_VS2_OV      | VS2 over-voltage filter time | VS2 rising                                                                                                                                                           | 60  |     | 105 | μs   |
| VR1 Voltage Regul | ator                         | ·                                                                                                                                                                    |     |     | •   | L    |

| V_VR1       | Regulator output voltage     | $\begin{array}{ll} 0 \mbox{ mA} \leq \mbox{ I(VR1)} \leq 250 \mbox{ mA}, \\ 6 \mbox{ V} \leq \mbox{ VS1} \leq 28 \mbox{ V} \end{array}$                                                                 | 4.9 | 5                 | 5.1        | V  |
|-------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------|------------|----|
| lout_VR1    | Regulator output current     | Maximum VR1 load current                                                                                                                                                                                |     |                   | 250        | mA |
| llim_VR1    | Regulator current limitation | Maximum VR1 overload current, VR1 > RES_VR1                                                                                                                                                             | 400 |                   | 1000       | mA |
| Ishort_VR1  | Regulator short current      | Maximum VR1 short current, VR1 < RES_VR1                                                                                                                                                                | 133 | 1/3 ·<br>Ilim_VR1 | 333        | mA |
| Vdrop_VR1   | Dropout Voltage              | $\begin{split} I(VR1) &= 100 \text{ mA, } VS1 = 5 \text{ V} \\ \cdot Tj &\leq 150^{\circ}\text{C} \\ \cdot Tj &\leq 40^{\circ}\text{C} \text{ (Note 6)} \\ \cdot Tj &= -40^{\circ}\text{C} \end{split}$ |     | 0.2               | 0.4<br>0.2 | V  |
|             |                              | I(VR1) = 100 mA, VS1 = 4.5 V                                                                                                                                                                            |     |                   | 0.5        |    |
|             |                              | I(VR1) = 50 mA, VS1 = 4.5 V                                                                                                                                                                             |     |                   | 0.4        |    |
| Loadreg_VR1 | Load Regulation              | $1 \text{ mA} \leq I(\text{VR1}) \leq 100 \text{ mA}$                                                                                                                                                   | -50 |                   | 50         | mV |
| Linereg_VR1 | Line Regulation              | $I(VR1) \le 100 \text{ mA}$                                                                                                                                                                             | -30 |                   | 30         | mV |
| Cload_VR1   | VR1 load capacity            | ESR < 200 m $\Omega$ , ceramic capacitor recommended                                                                                                                                                    | 1   | 4.7               |            | μF |

| Table 5. ELECTRICAL | . CHARACTERISTICS (6 V $\leq$ | $Vs1 = Vs2 \le 18 V; -40^{\circ}C \le T$ | $j \leq 150^{\circ}C$ ; unless otherwise specified.) |
|---------------------|-------------------------------|------------------------------------------|------------------------------------------------------|
|---------------------|-------------------------------|------------------------------------------|------------------------------------------------------|

| Symbol             | Parameter                      | Conditions             | Min  | Тур             | Max | Unit |  |
|--------------------|--------------------------------|------------------------|------|-----------------|-----|------|--|
| VR1 Voltage Regula | VR1 Voltage Regulator          |                        |      |                 |     |      |  |
| RES_VR1            | VR1 Reset threshold            | VR1 voltage decreasing | 4.3  | 4.5             | 4.7 | V    |  |
| RES_hyst_VR1       | VR1 Reset threshold hysteresis |                        | 0.05 | 0.1             | 0.2 | V    |  |
| Tfilt_RES_VR1      | VR1 undervoltage filter time   |                        |      | 15              |     | μs   |  |
| Toff_VR1           | VR1 off time after TSD         |                        |      | 1               |     | s    |  |
| ls_add_VR1         | VS consumption adder of VR1    | (Note 6)               |      | 0.02∙<br>I(VR1) |     | A    |  |

#### **HS** Driver

|            |                                    | Tj = 25°C (Note 6)                                                                                                  |          | 0.3       |      |      |
|------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------|-----------|------|------|
|            |                                    | Tj = 125°C (Note 6)                                                                                                 |          |           | 0.6  |      |
| Ron_HS     | On-resistance                      | Tj = 125°C, Vs2 = 4.3 V (Note 6)                                                                                    |          |           | 0.8  | Ω    |
|            |                                    | Tj = 150°C                                                                                                          |          |           | 0.7  |      |
| llim_HS    | Current Limitation                 |                                                                                                                     | -3.7     | -3        | -2.5 | А    |
| loc_HS     | Overcurrent threshold              |                                                                                                                     | -3.7     | -2.7      | -1.7 | А    |
| luld_HS    | Underload detection threshold      |                                                                                                                     | -40      |           | -6   | mA   |
| lleak_HS   | Output leakage current             | HS off ; V(HS) = 0 V<br>Tj = 25°C (Note 6)<br>Tj = 150°C                                                            | -1<br>-5 |           |      | μA   |
| td_on_HS   | Output delay time                  | HS_EN = Low -> High;<br>V(HS) = 0.1·Vs2<br>·HS_EN was Low for more than 30 ms<br>·HS_EN was Low for less than 20 ms |          | 140<br>40 |      | μs   |
| td_off_HS  | Output delay time                  | $HS_EN = High \rightarrow Low; V(HS) = 0.9 \cdot Vs2$                                                               |          | 40        |      | μs   |
| td_oc_HS   | Over-current detection filter time |                                                                                                                     |          |           | 65   | μs   |
| tdb_uld_HS | Underload detection blanking delay | Timer started after driver activation and $V(HS) = Vs2 - 2 V$                                                       |          |           | 130  | μs   |
| td_uld_HS  | Underload detection filter time    | HS Driver active, tdb_uld_HS elapsed                                                                                |          |           | 70   | μs   |
| dVout_HS   | Slew rate                          | HS load = 16 $\Omega$ to GND                                                                                        |          | 0.2       |      | V/µs |
| ls_add_HS  | HS consumption from VS2            | HS_EN = High; HS pin floating                                                                                       | 2        | 4.4       | 8    | mA   |

Watchdog Timing (see Figure 2)

| Twd_acc | Watchdog timing accuracy                                           |                                                  | -15 |     | +15 | %  |
|---------|--------------------------------------------------------------------|--------------------------------------------------|-----|-----|-----|----|
| T_wd_TO | Timeout watchdog period                                            | After WD_EN low -> high transition or RSTN pulse |     | 65  |     | ms |
| T_wd_CW | Window watchdog closed win-<br>dow                                 |                                                  |     | 6   |     | ms |
| T_wd_OW | Window watchdog open window                                        |                                                  |     | 100 |     | ms |
| T_RSTN  | Reset pulse length after VR1 un-<br>dervoltage or watchdog failure |                                                  |     | 8   |     | ms |
| T_WDI   | Minimum WDI pulse width ac-<br>cepted as a watchdog service        |                                                  | 6   |     |     | μs |

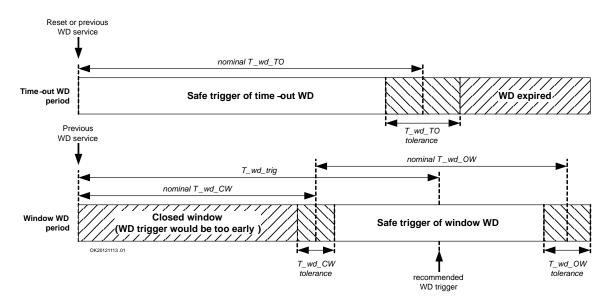
#### Digital Outputs, RxDC, HS\_DIAG

| loutL_pinx          | Low-level output driving current  | pinx is logical Low, forced V(pinx) = 0.4 V        | 1  | 6  | 12 | mA |
|---------------------|-----------------------------------|----------------------------------------------------|----|----|----|----|
| loutH_pinx          | High-level output driving current | pinx is logical High, forced V(pinx) = VR1 – 0.4 V | -8 | -3 | -1 | mA |
| Digital Output RSTN | 4                                 |                                                    |    |    |    |    |

# IoutL\_RSTNLow-level output driving currentRSTN is active (logical Low), forced V(RSTN) =2512mA

| Table 5. ELECTRICAL | CHARACTERISTICS (6 | $6 V \le Vs1 = Vs2 \le 18 V; -40^{\circ}C \le 18 $ | $\leq$ Tj $\leq$ 150°C; unless otherwise specified.) |
|---------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|---------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|

| Symbol              | Parameter                               | Conditions                             |   | Тур | Max | Unit |
|---------------------|-----------------------------------------|----------------------------------------|---|-----|-----|------|
| Digital Output RSTN | I                                       |                                        |   |     |     |      |
|                     |                                         | VR1 > 4.7 V, I(RSTN) = 0.7 mA          |   |     | 0.4 |      |
| VoutL_RSTN          | Low–level output voltage, low<br>VR1/VS | VR1 > 2 V, VS1 < VR1, I(RSTN) = 0.1 mA |   |     | 0.4 | V    |
|                     |                                         | VS1 > 2 V, I(RSTN) = 0.3 mA            |   |     | 0.4 |      |
| Rpullup_RSTN        | Internal pull-up resistor to VR1        |                                        | 5 | 10  | 19  | kΩ   |


#### Digital Inputs TxDC, CAN\_EN, WD\_EN, HS\_EN

| VinL_pinx        | Low-level input voltage (logical<br>"Low")                           |                                               | 0   |     | 0.8 | V  |
|------------------|----------------------------------------------------------------------|-----------------------------------------------|-----|-----|-----|----|
| VinH_pinx        | High–level input voltage (logical<br>"High")                         |                                               | 2   |     | VR1 | V  |
| Vin_hys_pinx     | Input voltage hysteresis                                             |                                               | 100 |     | 500 | mV |
| Rpullup_pinx     | Internal pull–up resistor to VR1;<br>pin TxDC                        |                                               | 55  | 100 | 185 | kΩ |
| Rpulldown_pinx   | Internal pull–down resistor to<br>ground;<br>pins CAN_EN, HS_EN, WDI |                                               | 55  | 100 | 185 | kΩ |
| lpullup_WD_EN    | Internal pull–up current to VR1,<br>pin WD_EN                        | V(WD_EN) = 0 V, pull-up current source active | 50  | 100 | 200 | μΑ |
| Tper_pullup_WDEN | WD_EN pull-up current source activation period                       | WD_EN = CAN_EN = HS_EN = Low                  |     | 610 |     | μs |
| Ton_pullup_WDEN  | WD_EN pull-up current source activation on-time                      | WD_EN = CAN_EN = HS_EN = Low                  |     | 5   |     | μs |

#### **Thermal Protection**

| Tsd1     | Thermal shutdown level 1              | Temperature increasing; HS switched off          | 145 | 155 | 165 | °C |
|----------|---------------------------------------|--------------------------------------------------|-----|-----|-----|----|
| Tsd2     | Thermal shutdown level 2              | Temperature increasing; VR1 and CAN switched off | 165 | 175 | 185 | °C |
| Tsd1_off | Thermal shutdown recovery temperature | Temperature decreasing; HS switched on           | 135 | 145 | 155 | °C |

6. Not tested in production, guaranteed by design.





#### Table 6. ELECTRICAL CHARACTERISTICS (CONTINUED)

(VR1 = 4.75 V to 5.25 V;  $T_J$  = -40°C to +150°C;  $R_{LT}$  = 60  $\Omega$ ,  $C_{LT}$  = 100 pF,  $C_1$  not used unless specified otherwise.)

| Symbol                         | Parameter                                                                                                                                    | Conditions                                                                                                                                                                                                | Min.         | Тур. | Max.       | Unit |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|------------|------|
| CAN BUS LINES (                | Pins CANH and CANL)                                                                                                                          |                                                                                                                                                                                                           |              |      |            |      |
| I <sub>o(rec)</sub>            | Recessive output current at pins CANH and CANL                                                                                               | CAN enabled;<br>-27 V < V <sub>CANH/L</sub> < +32 V                                                                                                                                                       | -5           | -    | +5         | mA   |
| I <sub>LI</sub>                | Input leakage current $\begin{array}{l} 0 \leq < R(VR1 \text{ to GND}) < 1 \text{ M}\Omega \\ V_{CANH} = V_{CANH} = 5 \text{ V} \end{array}$ |                                                                                                                                                                                                           | -5           | 0    | +5         | μA   |
| V <sub>o(rec) (CANH)</sub>     | Recessive output voltage at pin CANH                                                                                                         | CAN enabled; V <sub>TxDC</sub> = VR1                                                                                                                                                                      | 2.0          | 2.5  | 3.0        | V    |
| V <sub>o(rec)</sub> (CANL)     | Recessive output voltage at pin CANL                                                                                                         | CAN enabled; V <sub>TxDC</sub> = VR1                                                                                                                                                                      | 2.0          | 2.5  | 3.0        | V    |
| V <sub>o(off)</sub> (CANH)     | Recessive output voltage at pin CANH                                                                                                         | CAN disabled                                                                                                                                                                                              | -0.1         | 0    | 0.1        | V    |
| V <sub>o(off)</sub> (CANL)     | Recessive output voltage at pin CANL                                                                                                         | CAN disabled                                                                                                                                                                                              | -0.1         | 0    | 0.1        | V    |
| V <sub>o(off)</sub> (diff)     | Differential bus output voltage in off<br>mode (V <sub>CANH</sub> – V <sub>CANL</sub> )                                                      | CAN disabled                                                                                                                                                                                              | -0.2         | 0    | 0.2        | V    |
| V <sub>o(dom)</sub> (CANH)     | Dominant output voltage at pin CANH                                                                                                          |                                                                                                                                                                                                           | 2.75         | 3.5  | 4.5        | V    |
| V <sub>o(dom)</sub> (CANL)     | Dominant output voltage at pin CANL                                                                                                          |                                                                                                                                                                                                           | 0.5          | 1.1  | 2.25       | V    |
| V <sub>o(dom)(sym)</sub>       | Dominant output CANH/CANL drivers<br>symmetry (V <sub>CANH</sub> + V <sub>CANL</sub> )                                                       | $R_{LT}$ = 60 Ω; C <sub>1</sub> = 4.7 nF;<br>TxDC driven by square wave up<br>to 1 MHz                                                                                                                    | 0.9          |      | 1.1        | VR1  |
| V <sub>o(dom) (diff)</sub>     | Differential bus output voltage<br>(V <sub>CANH</sub> – V <sub>CANL</sub> )                                                                  | $V_{TxDC} = 0 V$ ; dominant;<br>45 $\Omega < R_{LT} < 65 \Omega$                                                                                                                                          | 1.5          | 2.25 | 3.0        | V    |
| V <sub>o(dom)</sub> (diff)_arb | Differential bus output voltage during arbitration (V $_{\rm CANH}$ – V $_{\rm CANL}$ )                                                      | $V_{TxDC} = 0 V$ ; dominant;<br>$R_{LT} = 2240 \Omega$ ; (Note 7)                                                                                                                                         | 1.5          |      | 5          | V    |
| V <sub>o(rec) (diff)</sub>     | Differential bus output voltage<br>(V <sub>CANH</sub> – V <sub>CANL</sub> )                                                                  | V <sub>TxDC</sub> = VR1; recessive;<br>no load                                                                                                                                                            | -50          | 0    | +50        | mV   |
| I <sub>o(sc)</sub> (CANH)      | Short circuit output current at pin CANH                                                                                                     | $V_{CANH} = -3 \text{ V}; V_{TxDC} = 0 \text{ V}$ $-3 \text{ V} \le V_{CANH} \le +18 \text{ V}$                                                                                                           | -100<br>-100 | -70  | -40<br>1   | mA   |
| I <sub>o(sc)</sub> (CANL)      | Short circuit output current at pin CANL                                                                                                     | $V_{CANL} = 36 \text{ V}; V_{TxDC} = 0 \text{ V}$ $-3 \text{ V} \le V_{CANL} \le +18 \text{ V}$                                                                                                           | 40<br>-1     | 70   | 100<br>100 | mA   |
| V <sub>i(th)(diff)_NORM</sub>  | Differential receiver threshold voltage in normal mode                                                                                       | CAN enabled;<br>-12 V < V <sub>CANH</sub> < +12 V;<br>-12 V < V <sub>CANL</sub> < +12 V                                                                                                                   | 0.5          | _    | 0.9        | V    |
| Vi(rec)(diff)_NORM             | Differential receiver input voltage for re-<br>cessive state in normal mode                                                                  | CAN enabled;<br>-12 V < V <sub>CANH</sub> < +12 V;<br>-12 V < V <sub>CANL</sub> < +12 V                                                                                                                   | -3           | _    | 0.5        | v    |
| V <sub>i(dom)(diff)_NORM</sub> | Differential receiver input voltage for<br>dominant state in normal mode                                                                     | CAN enabled;<br>-12 V < V <sub>CANH</sub> < +12 V;<br>-12 V < V <sub>CANL</sub> < +12 V                                                                                                                   | 0.9          | _    | 8          | V    |
| V <sub>i(th)(diff)_WU</sub>    | Differential receiver threshold voltage in wakeup-detection mode                                                                             | $\label{eq:canonical} \begin{array}{l} \mbox{CAN in wakeup-detection mode;} \\ \mbox{-12 V} < \mbox{V}_{CANH} < \mbox{+12 V;} \\ \mbox{-12 V} < \mbox{V}_{CANL} < \mbox{+12 V} \end{array}$               | 0.4          | _    | 1.05       | V    |
| V <sub>i(rec)(diff)</sub> _WU  | Differential receiver input voltage for re-<br>cessive state in wakeup-detection mode                                                        | CAN in wakeup-detection mode;<br>-12 V < $V_{CANH}$ < +12 V;<br>-12 V < $V_{CANL}$ < +12 V                                                                                                                | -3           | _    | 0.4        | v    |
| V <sub>i(dom)(diff)_WU</sub>   | Differential receiver input voltage for<br>dominant state in wakeup-detection<br>mode                                                        | $\label{eq:canonical} \begin{array}{l} \mbox{CAN in wakeup-detection mode;} \\ \mbox{-12 V} < \mbox{V}_{\mbox{CANH}} < \mbox{+12 V;} \\ \mbox{-12 V} < \mbox{V}_{\mbox{CANL}} < \mbox{+12 V} \end{array}$ | 1.05         | -    | 8          | v    |
| R <sub>i(cm) (CANH)</sub>      | Common-mode input resistance at pin CANH                                                                                                     | $\label{eq:canabased} \begin{array}{l} -2 \ V \leq V_{CANH} \leq +7 \ V; \\ -2 \ V \leq V_{CANL} \leq +7 \ V \end{array}$                                                                                 | 15           | 25   | 37         | kΩ   |

#### Table 6. ELECTRICAL CHARACTERISTICS (CONTINUED)

(VR1 = 4.75 V to 5.25 V;  $T_J$  = -40°C to +150°C;  $R_{LT}$  = 60  $\Omega$ ,  $C_{LT}$  = 100 pF,  $C_1$  not used unless specified otherwise.)

| Symbol                      | Parameter                                                                                      | Conditions                                                                                                               | Min. | Тур. | Max. | Unit |
|-----------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| CAN BUS LINES               | (Pins CANH and CANL)                                                                           |                                                                                                                          |      |      |      |      |
| R <sub>i(cm)</sub> (CANL)   | Common-mode input resistance at pin CANL                                                       | $\label{eq:canabian} \begin{array}{l} -2 \ V \leq V_{CANH} \leq +7 \ V; \\ -2 \ V \leq V_{CANL} \leq +7 \ V \end{array}$ | 15   | 25   | 37   | kΩ   |
| R <sub>i(cm) (m)</sub>      | Matching between pin CANH and pin CANL common mode input resistance                            | V <sub>CANH</sub> = V <sub>CANL</sub> = 5 V                                                                              | -1   | 0    | +1   | %    |
| R <sub>i(diff)</sub>        | Differential input resistance                                                                  | $\begin{array}{l} -2 \ V \leq V_{CANH} \leq +7 \ V; \\ -2 \ V \leq V_{CANL} \leq +7 \ V \end{array}$                     | 25   | 50   | 75   | kΩ   |
| C <sub>i(CANH)</sub>        | Input capacitance at pin CANH                                                                  | V <sub>TxDC</sub> = VR1; (Note 7)                                                                                        | -    | 7.5  | 20   | pF   |
| C <sub>i(CANL)</sub>        | Input capacitance at pin CANL                                                                  | V <sub>TxDC</sub> = VR1; (Note 7)                                                                                        | -    | 7.5  | 20   | pF   |
| C <sub>i(diff)</sub>        | Differential input capacitance                                                                 | V <sub>TxDC</sub> = VR1; (Note 7)                                                                                        | -    | 3.75 | 10   | pF   |
| TIMING CHARAC               | TERISTICS (see Figure 3 and Figure 4)                                                          |                                                                                                                          |      |      |      |      |
| t <sub>d(TxDC-BUSon)</sub>  | Delay TxDC to bus dominant                                                                     |                                                                                                                          | -    | 65   | -    | ns   |
| t <sub>d(TxDC-BUSoff)</sub> | Delay TxDC to bus recessive                                                                    |                                                                                                                          | -    | 90   | -    | ns   |
| t <sub>d(BUSon-RxDC)</sub>  | Delay bus dominant to RxDC                                                                     |                                                                                                                          | -    | 60   | -    | ns   |
| t <sub>d(BUSoff-RxDC)</sub> | Delay bus recessive to RxDC                                                                    |                                                                                                                          | -    | 65   | -    | ns   |
| t <sub>pd_dr</sub>          | Propagation delay TxDC to RxDC domi-<br>nant to recessive transition                           |                                                                                                                          | 50   | 100  | 210  | ns   |
| t <sub>pd_rd</sub>          | Propagation delay TxDC to RxDC recessive to dominant transition                                |                                                                                                                          | 50   | 120  | 210  | ns   |
| t <sub>d(stb-nm)</sub>      | Delay wake-up detection mode to nor-<br>mal mode                                               |                                                                                                                          | 7    | 25   | 47   | μs   |
| t <sub>wake_filt</sub>      | Dominant time for wake-up via bus                                                              |                                                                                                                          | 0.15 | -    | 1.8  | μs   |
| t <sub>dwakerd</sub>        | Delay to flag wake event (recessive to dominant transitions)                                   | Valid bus wake-up event                                                                                                  | 0.5  |      | 10   | μs   |
| t <sub>dwakedr</sub>        | Delay to flag wake event (dominant to recessive transitions)                                   | Valid bus wake-up event                                                                                                  | 0.5  |      | 10   | μs   |
| t <sub>wake_to</sub>        | Bus time for wake-up timeout                                                                   | CAN_EN = low                                                                                                             | 1    | -    | 10   | ms   |
| t <sub>dom(TxDC)</sub>      | TxDC dominant time for timeout                                                                 | CAN_EN = high; $V_{TxDC} = 0 V$                                                                                          | 1    | -    | 10   | ms   |
|                             |                                                                                                | t <sub>Bit(TxDC)</sub> = 500 ns                                                                                          | 400  | -    | 550  | ns   |
| t <sub>Bit(RxDC)</sub>      | Bit time on RxDC pin                                                                           | t <sub>Bit(TxDC)</sub> = 200 ns                                                                                          | 120  | -    | 220  | ns   |
| tp:+()/:(-1:#))             | Bit time on bus (CANH – CANL pin)                                                              | t <sub>Bit(TxDC)</sub> = 500 ns                                                                                          | 435  | -    | 530  | ns   |
| <sup>t</sup> Bit(Vi(diff))  |                                                                                                | t <sub>Bit(TxDC)</sub> = 200 ns                                                                                          | 155  | -    | 210  | ns   |
| $\Delta t_{Rec}$            | Receiver timing symmetry                                                                       | t <sub>Bit(TxDC)</sub> = 500 ns                                                                                          | -65  | -    | 40   | ns   |
|                             | $\Delta t_{\text{Rec}} = t_{\text{Bit}(\text{RxDC})} - t_{\text{Bit}(\text{Vi}(\text{diff}))}$ | t <sub>Bit(TxDC)</sub> = 200 ns                                                                                          | -45  | -    | 15   | ns   |

7. Not tested in production, guaranteed by design.

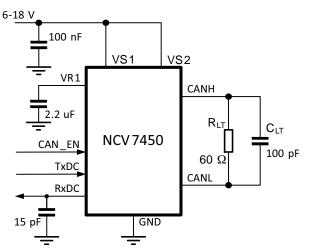



Figure 3. Test Circuit for Timing Characteristics

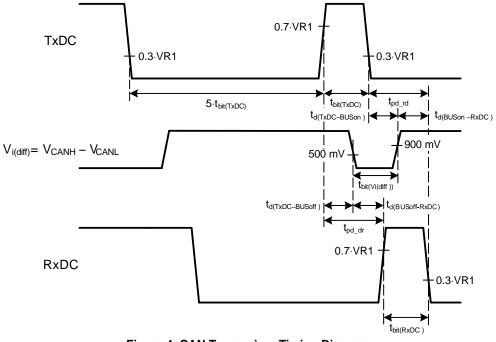



Figure 4. CAN Transceiver Timing Diagram

#### FUNCTIONAL DESCRIPTION

#### **Supply Concept**

The device has two independent supply pins VS1 and VS2. While VR1 regulator and logic control are supplied from VS1, High–side driver is supplied from VS2. Both supply lines have to be properly decoupled by filtration capacitors close to the device pins.

As long as VS1 < VS\_POR level, all the blocks are in power–down mode.

#### VR1 Low-drop Regulator

VR1 is a low-drop output regulator providing 5 V voltage derived from the VS1 main supply. It is able to deliver up to 250 mA and is primarily intended to supply the on-chip CAN transceiver, the application microcontroller unit (MCU) and related 5 V loads (e.g. its own MCU-related digital inputs/outputs). An external capacitor needs to be connected on VR1 pin in order to ensure the regulator's stability and to filter the disturbances caused by the connected loads.

VR1 voltage is supplying all the digital low-voltage input/output pins.

The protection and monitoring of the VR1 regulator consist of the following features:

- VR1 Current Limitation the two–level current limitation controlled by VR1 reset comparator to reduce the power dissipation in case of shorts to ground by the current fold–back (see Figure 6)
- VR1 Reset Comparator the VR1 regulator output is compared with a reset level RES\_VR1. If the VR1 level drops below this level for longer than *Tflt\_RES\_VR1*, a reset towards the MCU is generated through the RSTN pin and peripherals (CAN transceiver and HS driver) disabled.
- • Temperature (see Figure 14)

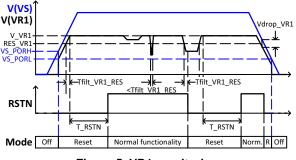



Figure 5. VR1 monitoring

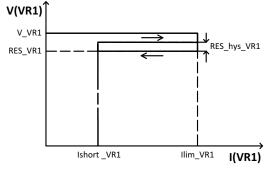



Figure 6. VR1 current fold-back

#### **CAN Transceiver**

The SBC contains one high-speed CAN transceiver compliant with ISO11898–2:2016. The transceiver consists of the following sub-blocks: transmitter, receiver, and wakeup detector.

If enabled (CAN\_EN = High), the CAN transceiver is ready to provide the full-speed interface between the bus and a CAN controller connected on pins RxDC (received data) and TxDC (data to transmit).

In order to prevent a faulty node from blocking the bus traffic, the maximum length of the transmitted dominant symbol is limited by a time–out counter to  $t_TxDC_timeout$ . In case the TxDC Low signal exceeds the timeout value, the transmitter returns automatically to the recessive state. The transmission is again de–blocked when TxDC pin returns to high (recessive) state.

If the CAN block is disabled (CAN\_EN = Low), the CAN transceiver is in its wake–up detection state. The bus lines are biased to ground. Logical level on TxDC is ignored and pin RxDC is kept high until a CAN bus wake–up is detected. The CAN bus wake–up corresponds to a pattern consisting of dominant – recessive – dominant symbols of at least  $t_{wake_filt}$  each. The RxDC starts following the CAN bus afterwards. The pattern must be received within  $t_{wake_to}$  to be recognized as a valid wake–up event, otherwise internal wake–up logic is reset.



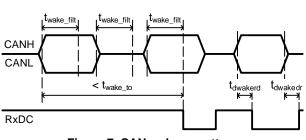
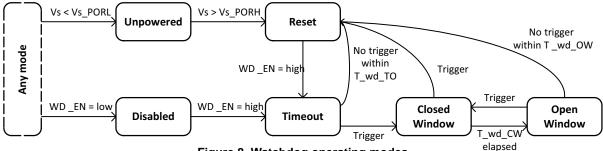



Figure 7. CAN wakeup pattern

#### **HS** Driver

HS high-side driver is intended to drive an external load. Its state is directly controlled via HS\_EN pin and diagnostics are flagged on HS\_DIAG pin (see Table 7).

When the driver is enabled (HS\_EN = High), it is protected against an excessive current and temperature and diagnosed on under-load condition.


In case the HS driver is controlled by a PWM signal through HS\_EN with very low duty-cycle, the diagnostic

features are limited by *td\_oc\_HS* in case of an over–current and (VS2 / *dVout\_HS*) + *td\_uld\_HS* in case of an underload.

The HS driver is designed to drive resistive loads. Therefore only a limited clamping energy (W < 1 mJ) can be dissipated by the device. For inductive loads (L > 100  $\mu$ H) an external freewheeling diode connected between GND and the HS pin is required.

| Table 7. | . HS | Driver | Diagnostics |
|----------|------|--------|-------------|
|----------|------|--------|-------------|

| Event                         | HS_EN | Failure condition      | HS status | HS_DIAG | Recovery condition     |
|-------------------------------|-------|------------------------|-----------|---------|------------------------|
| Normal anaration (no failure) | Low   | -                      | Off       | High    | -                      |
| Normal operation (no failure) | High  | -                      | On        | High    | -                      |
| Over-current                  | High  | I(HS) > <i>loc_HS</i>  | Off       | Low     | HS_EN = Low            |
| Under-load                    | Lliab |                        | On        | Low     |                        |
| Short-to-battery              | High  | I(HS) < <i>luld_HS</i> | On        | Low     | I(HS) > <i>luld_HS</i> |
| Over-temperature              | High  | Tj > <i>T</i> sd1      | Off       | Low     | Tj < Tsd1_off          |
| VS2 Over-voltage              | High  | VS2 > VS2_0V           | Off       | Low     | VS2 < VS2_0V           |
| RSTN active                   | High  | RSTN = Low             | Off       | Low     | RSTN = High            |





#### Watchdog

The on-chip watchdog requires that the MCU software "triggers" or "services" the watchdog in a specified time frame. A correct watchdog service consists of high-to-low transition on the WDI input. The watchdog timer re-starts immediately after a successful trigger is received.

After any Reset event (power–up, watchdog failure, VR1 undervoltage, thermal shutdown 2) or watchdog enable (WD\_EN = Low  $\rightarrow$  High), the watchdog always starts in a timeout mode. The MCU software must serve the watchdog any time before the time–out expiration. After the watchdog is triggered for the first time, it starts working in a window mode operation: the watchdog time is split to two distinct parts – a closed window, where the watchdog may not be triggered, is followed by an open window where the MCU must send a valid watchdog trigger (see Figure 9).

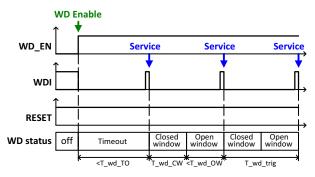



Figure 9. Correct watchdog services

In case the watchdog is not triggered before the timeout or open window elapses (Figure 10, Figure 11), or trigger is sent within the closed window (Figure 12), RSTN signal is generated and then watchdog restarted in the timeout mode again.

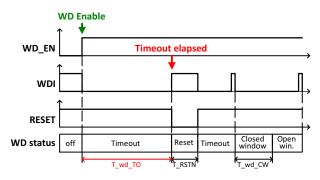



Figure 10. Missed watchdog in Timeout mode

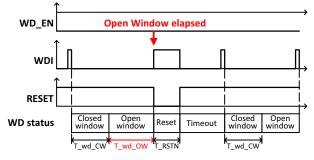



Figure 11. Missed watchdog in Window mode

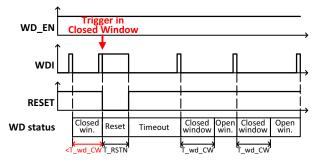



Figure 12. Watchdog service during closed window

The WD\_EN pin has an integrated pull-up source to enable the watchdog in case the pin is disconnected from the application. To reduce the power consumption in the low-power mode (watchdog, CAN and HS driver disabled), the WD\_EN pull-up current source is switched on for *Ton\_pullup\_WDEN* time with period of *Tper\_pullup\_WDEN*. The pin state is sampled in the end of the current source activation. Once High level is detected on the WD\_EN pin, the current source is activated permanently. To ensure the High level is correctly detected if the pin becomes floating, external WD\_EN capacity should stay below 50 pF.

After the rising edge on WD\_EN pin, the MCU should wait *Tper\_pullup\_WDEN* before the first watchdog service.

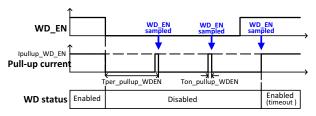



Figure 13. WD\_EN pull-up current source activation

#### **Thermal Protection**

The device junction temperature is monitored in order to avoid permanent degradation or damage. Two distinct junction temperature levels are provided – thermal shutdown level 1 *Tsd1* (typ. 155°C) and thermal shutdown level 2 *Tsd2* (typ. 175°C).

When the junction temperature exceeds the first thermal shutdown level, the high–side driver is disabled while VR1 and CAN transceiver keeps running so that the MCU can still take appropriate actions. The junction temperature above the second shutdown level leads to complete device de–activation, VR1 included; the device recovers automatically after the junction temperature drops below *Tsd1* level and *Toff\_VR1* (typ. 1 second) elapses. HS driver functionality is recovered when the junction temperature drops below *Tsd1\_off*.

The details of the thermal protection handling are shown in Figure 14.

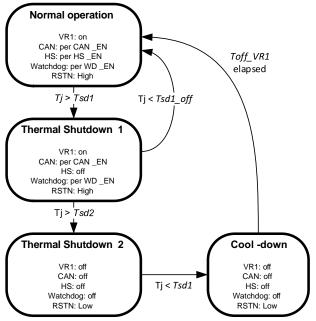
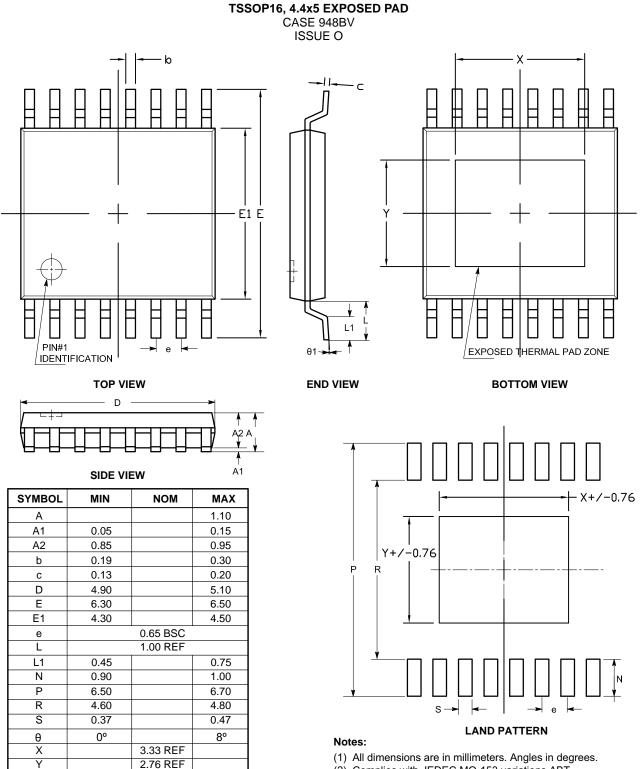



Figure 14. Thermal monitoring flow chart


## Table 8. ISO11898-2:2016 parameter cross-reference table

| ISO 11898–2:2016 Specification                                                       | NCV7450 Datashee                         |                                                      |  |
|--------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|--|
| Parameter                                                                            | Notation                                 | Symbol                                               |  |
| Dominant output characteristics                                                      |                                          |                                                      |  |
| Single ended voltage on CAN_H                                                        | V <sub>CAN_H</sub>                       | V <sub>o(dom)(CANH)</sub>                            |  |
| Single ended voltage on CAN_L                                                        | V <sub>CAN_L</sub>                       | V <sub>o(dom)(CANL)</sub>                            |  |
| Differential voltage on normal bus load                                              | V <sub>Diff</sub>                        | V <sub>o(dom)(diff)</sub>                            |  |
| Differential voltage on effective resistance during arbitration                      | V <sub>Diff</sub>                        | V <sub>o(dom)(diff)_arb</sub>                        |  |
| Optional: Differential voltage on extended bus load range                            | V <sub>Diff</sub>                        | V <sub>o(dom)(diff)</sub>                            |  |
| Driver symmetry                                                                      |                                          |                                                      |  |
| Driver symmetry                                                                      | V <sub>SYM</sub>                         | V <sub>o(dom)(sym)</sub>                             |  |
| Driver output current                                                                |                                          |                                                      |  |
| Absolute current on CAN_H                                                            | I <sub>CAN_H</sub>                       | I <sub>0(SC)(CANH)</sub>                             |  |
| Absolute current on CAN_L                                                            | I <sub>CAN_L</sub>                       | I <sub>O(SC)(CANL)</sub>                             |  |
| Receiver output characteristics, bus biasing active                                  |                                          |                                                      |  |
| Single ended output voltage on CAN_H                                                 | V <sub>CAN_H</sub>                       | V <sub>o(rec)(CANH)</sub>                            |  |
| Single ended output voltage on CAN_L                                                 | V <sub>CAN_L</sub>                       | V <sub>o(rec)(CANL)</sub>                            |  |
| Differential output voltage                                                          | V <sub>Diff</sub>                        | V <sub>o(rec)(diff)</sub>                            |  |
| Receiver output characteristics, bus biasing inactive                                |                                          |                                                      |  |
| Single ended output voltage on CAN_H                                                 | V <sub>CAN_H</sub>                       | V <sub>o(off)(CANH)</sub>                            |  |
| Single ended output voltage on CAN_L                                                 | V <sub>CAN_L</sub>                       | V <sub>o(off)(CANL)</sub>                            |  |
| Differential output voltage                                                          | V <sub>Diff</sub>                        | V <sub>o(off)(dif)</sub>                             |  |
| Optional transmit dominant timeout                                                   |                                          |                                                      |  |
| Transmit dominant timeout, long                                                      | t <sub>dom</sub>                         | T <sub>dom(TxDC)</sub>                               |  |
| Transmit dominant timeout, short                                                     | t <sub>dom</sub>                         | NA                                                   |  |
| Static receiver input characteristics, bus biasing active                            |                                          |                                                      |  |
| Recessive state differential input voltage range                                     | V <sub>Diff</sub>                        | V <sub>i(rec)(diff) _ NORM</sub>                     |  |
| Dominant state differential input voltage range                                      | V <sub>Diff</sub>                        | V <sub>i(dom)(diff) _ NORM</sub>                     |  |
| Static receiver input characteristics, bus biasing inactive                          |                                          |                                                      |  |
| Recessive state differential input voltage range                                     | V <sub>Diff</sub>                        | V <sub>i(rec)(diff)</sub> _ WU                       |  |
| Dominant state differential input voltage range                                      | V <sub>Diff</sub>                        | V <sub>i(dom)(diff)</sub> _ WU                       |  |
| Receiver input resistance                                                            |                                          |                                                      |  |
| Differential internal resistance                                                     | R <sub>Diff</sub>                        | R <sub>i(diff)</sub>                                 |  |
| Single ended internal resistance                                                     | R <sub>CAN_H</sub><br>R <sub>CAN_L</sub> | R <sub>i(cm)(CANH)</sub><br>R <sub>i(cm)(CANL)</sub> |  |
| Receiver input resistance matching                                                   |                                          |                                                      |  |
| Matching a of internal resistance                                                    | m <sub>R</sub>                           | R <sub>i(cm)(m)</sub>                                |  |
| Implementation loop delay requirement                                                |                                          |                                                      |  |
| Loop delay                                                                           | t <sub>Loop</sub>                        | t <sub>pd_rd</sub><br>t <sub>pd_dr</sub>             |  |
| Optional implementation data signal timing requirements for use with bit rates above | /e 1 Mbit/s and up to                    |                                                      |  |
| Transmitted recessive bit width @ 2 Mbit/s                                           | t <sub>Bit(Bus)</sub>                    | t <sub>Bit(Vi(diff))</sub>                           |  |
| Received recessive bit width @ 2 Mbit/s                                              | t <sub>Bit(RXD)</sub>                    | t <sub>Bit(RxD)</sub>                                |  |
| Receiver timing symmetry @ 2 Mbit/s                                                  | Δt <sub>Rec</sub>                        | Δt <sub>Rec</sub>                                    |  |

#### Table 8. ISO11898–2:2016 parameter cross-reference table

| Parameter                                                                                       | Notation                                   | Symbol                                 |
|-------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------|
| Optional implementation data signal timing requirements for use with bit rates abo              | ve 2 Mbit/s and up to 5                    | Mbit/s                                 |
| Transmitted recessive bit width @ 5 Mbit/s                                                      | t <sub>Bit(Bus)</sub>                      | t <sub>Bit(Vi(diff))</sub>             |
| Transmitted recessive bit width @ 5 Mbit / s                                                    | t <sub>Bit(RXD)</sub>                      | t <sub>Bit(RxD)</sub>                  |
| Received recessive bit width @ 5 Mbit / s                                                       | $\Delta t_{Rec}$                           | $\Delta t_{Rec}$                       |
| Maximum ratings of $V_{CAN_{-}H}$ , $V_{CAN_{-}L}$ and $V_{Diff}$                               | •                                          |                                        |
| Maximum rating V <sub>Diff</sub>                                                                | V <sub>Diff</sub>                          | Vmax_diff                              |
| General maximum rating $V_{\mbox{CAN}\_\mbox{H}}$ and $V_{\mbox{CAN}\_\mbox{L}}$                | V <sub>CAN_H</sub><br>V <sub>CAN_L</sub>   | V <sub>CANH</sub><br>V <sub>CANL</sub> |
| Optional: Extended maximum rating $V_{\mbox{CAN}_{-}\mbox{H}}$ and $V_{\mbox{CAN}_{-}\mbox{L}}$ | V <sub>CAN_H</sub><br>V <sub>CAN_L</sub>   | NA                                     |
| Maximum leakage currents on CAN_H and CAN_L, unpowered                                          | •                                          |                                        |
| Leakage current on CAN_H, CAN_L                                                                 | I <sub>CAN_H</sub> ,<br>I <sub>CAN_L</sub> | ILI                                    |
| Bus biasing control timings                                                                     | •                                          |                                        |
| CAN activity filter time, long                                                                  | t <sub>Filter</sub>                        | NA                                     |
| CAN activity filter time, short                                                                 | t <sub>Filter</sub>                        | t <sub>wake_filt</sub>                 |
| Optional: Wake-up timeout, short                                                                | t <sub>Wake</sub>                          | t <sub>wake_to</sub>                   |
| Optional: Wake-up timeout, long                                                                 | t <sub>Wake</sub>                          | t <sub>wake_to</sub>                   |
| Timeout for bus inactivity (Required for selective wake-up implementation only)                 | t <sub>Silence</sub>                       | NA                                     |
| Bus Bias reaction time (Required for selective wake-up implementation only)                     | t <sub>Bias</sub>                          | NA                                     |

#### PACKAGE DIMENSIONS



(2) Complies with JEDEC MO-153 variations ABT.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hardness against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Order Literature: http://www

Phone: 421 33 790 2910

#### ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

 $\Diamond$