Self Protected High Side Driver with Temperature Shutdown and Current Limit

The NCV8461 is a fully protected High–Side driver that can be used to switch a wide variety of loads, such as bulbs, solenoids and other activators. The device is internally protected from an overload condition by an active current limit and thermal shutdown. A diagnostic output reports OFF state open load conditions as well as thermal shutdown.

Features

- Short Circuit Protection
- Thermal Shutdown with Automatic Restart
- CMOS (3 V / 5 V) Compatible Control Input
- Off State Open Load Detection
- Open Drain Diagnostic Output
- Overvoltage Protection
- Undervoltage Shutdown
- Loss of Ground and Loss of V_D Protection
- ESD Protection
- Reverse Battery Protection (with external resistor)
- Very Low Standby Current
- AEC-Q100 Qualified

Typical Applications

- Switch a Variety of Resistive, Inductive and Capacitive Loads
- Can Replace Electromechanical Relays and Discrete Circuits
- Automotive / Industrial

FEATURE SUMMARY

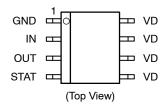
Overvoltage Protection	V _{OV}	41	V
R _{DSon} (max) T _J = 25°C	R _{ON}	350	mΩ
Output Current Limit (typ)	I _{lim}	1.2	Α
Operating Voltage Range	V _{OP}	5 – 34	V

ON Semiconductor®

http://onsemi.com

SOIC-8 CASE 751 STYLE 11

MARKING DIAGRAM


NCV8461 = Specific Device Code

A = Assembly Location

Y = Year
WW = Work Week
= Pb-Free Package

(*Note: Microdot may be in either location)

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8461DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

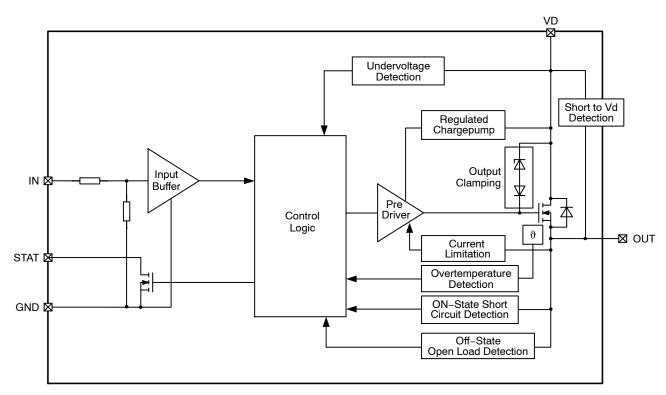


Figure 1. Block Diagram

SO8 PACKAGE PIN DESCRIPTION

Pin #	Symbol	Description	
1	GND	Ground	
2	IN	Logic Level Input	
3	OUT	Output	
4	STAT	Status Output	
5	V_D	Supply Voltage	
6	V_D	Supply Voltage	
7	V_D	Supply Voltage	
8	V_{D}	Supply Voltage	

Table 1. MAXIMUM RATINGS

		,			
Rating	Symbol	Min	Max	Unit	
DC Supply Voltage (Note 1)	V_{D}	-16	40	V	
Peak Transient Input Voltage (Note 1) (Load Dump XX V, V _D = 14 V, ISO7637-2 pulse5)	V _{peak}		60	V	
Input Voltage	V _{in}	-10	16	V	
Input Current	l _{in}	-5	5	mA	
Output Current (Note 1)	I _{out}	-	Internally Limited	Α	
Status Current	I _{status}	-5	5	mA	
Power Dissipation Tc = 25°C (Note 1)	P _{tot}		1.5	W	
Electrostatic Discharge (Note 1) (HBM Model 100 pF / 1500 Ω) Input Status Output V _D		4 4 5 5		DC kV kV kV	
Single Pulse Inductive Load Switching Energy (Note 1) $V_D = 13.5 \text{ V}; I_L = 0.5 \text{ A}, T_{Jstart} = 150^{\circ}\text{C}$	E _{AS}	-	300	mJ	
Operating Junction Temperature	TJ	-40	+150	°C	
Storage Temperature	T _{storage}	-55	+150	°C	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Not subjected to production testing

Table 2. THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max. Value	Units
Thermal Resistance (Note 2) Junction-to-Lead Junction-to-Ambient (6 cm square pad size, FR-4, 2 oz Cu)	R _{th} JL R _{th} JA	31 84	°C/W

^{2.} Reverse Output current has to be limited by the load to stay within absolute maximum ratings and thermal performance.

Table 3. ELECTRICAL CHARACTERISTICS (V_D = 13.5 V; $-40^{\circ}C$ < T_J < 150°C unless otherwise specified)

			Value			
Rating	Symbol	Conditions	Min	Тур	Max	Unit
Operating Supply Voltage	V_D		5	-	34	V
Undervoltage Shutdown	V _{UV}				5	V
Undervoltage Restart	V _{UV_Res}				5.5	V
Overvoltage Protection	V _{OV}	I _D = 4 mA	41			V
On Resistance	R _{ON}	I_{out} = 0.3 A; 6 V < V_D < 40 V, T_J = 25°C I_{out} = 0.3 A; 6 V < V_D < 40 V, T_J = 150°C		250 450	350 700	mΩ
Standby Current	I _D	Off State, $V_{in} = V_{out} = 0 \text{ V}$ On State; $V_{in} = 5 \text{ V}$, $I_{out} = 0 \text{ A}$		13 1	35 1.7	μA mA
Output Leakage Current	I _{L(off)}				12	μΑ
NPUT CHARACTERISTICS						
Input Voltage – Low	V_{in_low}				0.8	V
Input Voltage – High	V _{in_high}		2.2			V
Input Hysteresis Voltage	V _{hyst}			0.3		V
Off State Input Current	l _{in_OFF}	V _{in} = 0.7 V	1		10	μΑ
On State Input Current	I _{in_ON}	V _{in} = 5.0 V	1		10	μΑ
Input Resistance (Note 3)	R _I		1.5	3.5		ΚΩ
Input Clamp Voltage	V _{in_cl}	I _{in} = 1 mA I _{in} = -1 mA	14 –18	16 –16	18 –14	V
SWITCHING CHARACTERISTICS	3					
Turn-On Delay Time	t _{d_on}	to 90% V_{out} , R_L = 47 Ω			140	μs
Turn-Off Delay Time	t _{d_off}	to 10% V_{out} , R_L = 47 Ω			170	μs
Slew Rate On	dV _{out} /dt _{on}	10% to 30% Vout, R _L = 47 Ω			2	V / μs
Slew Rate Off	dV _{out} /dt _{off}	70% to 40% Vout, R _L = 47 Ω			2	V / μs
REVERSE BATTERY (Note 3)						
Reverse Battery	-V _D	Requires a 150 Ω Resistor in GND Connection			32	V
Forward Voltage	V _F	T _J = 150°C		0.6		V
STATUS PIN CHARACTERISTICS	3					
Status Output Voltage Low	V _{stat_low}	I_{stat} = 1.6 mA, T_J = -40°C to 25°C I_{stat} = 1.6 mA, T_J = 150°C (Note 3)			0.4 0.6	V
Status Leakage Current	I _{stat_leakage}	V _{stat} = 5 V			10	μΑ
Status Invalid Time After Positive Input Slope	T _{d(STAT)}			300	700	μs
Status Clamp Voltage	V _{stat_cl}	I _{stat} = 1 mA I _{stat} = -1 mA		10 -1.4		V
PROTECTION FUNCTIONS (Note	4)				•	
Temperature Shutdown (Note 3)	T _{SD}		150	175	200	°C
Temperature Shutdown Hysteresis (Note 3)	T _{SD_hyst}			10		°C
Output Current Limit Initial Peak	I _{lim}	$T_J = -40^{\circ}\text{C}, V_D = 20 \text{ V (Note 3)}$ $T_J = 25^{\circ}\text{C}$		1.2	2	Α

Not subjected to production testing
 To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper hardware/software strategy. If the devices operates under abnormal conditions this hardware/software solutions must limit the duration and number of activation cycles.

Table 3. ELECTRICAL CHARACTERISTICS ($V_D = 13.5~V$; $-40^{\circ}C < T_J < 150^{\circ}C$ unless otherwise specified)

	` .			,		
				Value		
Rating	Symbol	Conditions	Min	Тур	Max	Unit
PROTECTION FUNCTIONS (Note	e 4)					
Repetitive Short Circuit Current Limit	I _{lim(SC)}	$T_J = T_{Jt}$ (Note 3)		1		Α
Switch Off Output Clamp Voltage	V _{clamp}	$I_D = 4 \text{ mA}, V_{in} = 0 \text{ V}$	V _D - 41	V _D - 47		V
DIAGNOSTICS CHARACTERIST	ics		•	•		
Short Circuit Detection Voltage	V _{OUT(SC)}			2.8		V
Openload Off State Detection Threshold	V _{OL}	V _{in} = 0 V	1.5		3.5	V
Openload Detection Current	I _{L(OL)}			5		μΑ

Table 4. STATUS PIN TRUTH TABLE

Conditions	Input	Output	Status
Normal Operation	L	L	Н
	Н	Н	Н
Short Circuit to GND	L	L	Н
	Н	L*	L
Short to V _{D (OFF State)}	L	Н	L
	Н	Н	Н
Current Limitation	L	L	Н
	Н	H**	Н
Overtemperature	L	L	Н
	Н	L	L
OFF State Open Load	L	Н	L
	Н	Н	Н

^{*} Output = "L"; V_{OUT} < 2 V typ. ** Output = "H"; V_{OUT} > 2 V typ.

TYPICAL PERFORMANCE CHARACTERISTICS

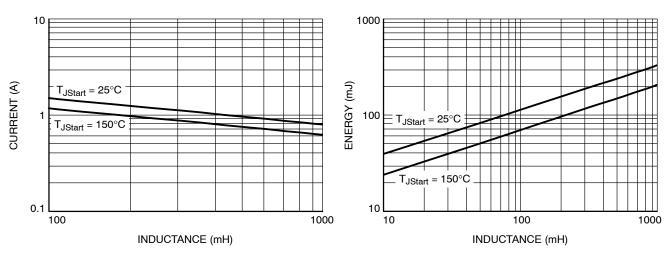
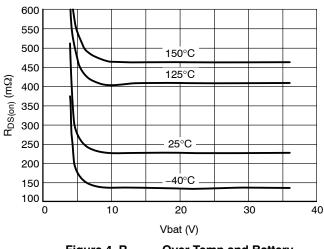
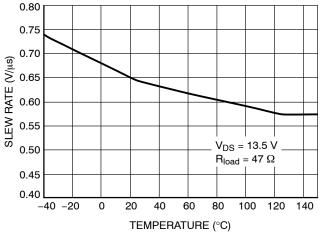



Figure 2. Maximum Single Pulse Switch Off **Current vs. Inductance**

Figure 3. Maximum Single Pulse Switch Off **Energy vs. Inductance**

^{3.} Not subjected to production testing4. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper hardware/software strategy. If the devices operates under abnormal conditions this hardware/software solutions must limit the duration and number of activation cycles.


TYPICAL PERFORMANCE CHARACTERISTICS

600 550 500 450 R_{DS(on)} (mΩ) 400 350 300 250 $V_{DS} = 13.5 \text{ V}$ 200 150 100 -40 -20 40 60 80 100 120 TEMPERATURE (°C)

Figure 4. R_{DS(on)} Over Temp and Battery

Figure 5. R_{DS(on)} vs. Temperature

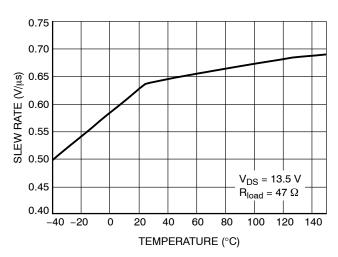
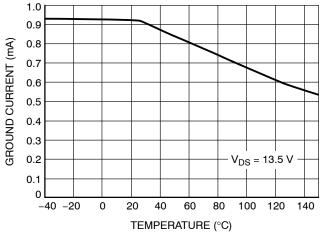



Figure 6. Slew Rate On vs. Temperature

Figure 7. Slew Rate Off vs. Temperature

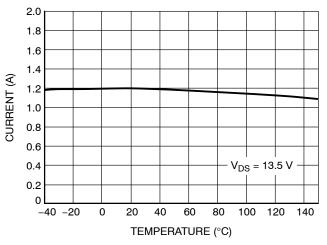
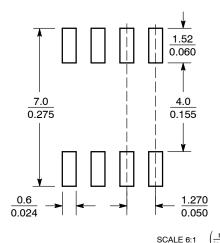


Figure 8. On State Ground Current vs. Temp

Figure 9. Current Limit vs. Temperature


PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AK** -X-В 0.25 (0.010) M $|\Phi|$ -Y-G С SEATING PLANE -**Z**-0.10 (0.004)

XS

0.25 (0.010) M Z Y S

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- PER SIJE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
- MAXIMUM MATERIAL CONDITION. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

STYLE 11: PIN 1. SOURCE 1

GATE 1 2.

- SOURCE 2
- GATE 2 DRAIN 2
- DRAIN 2
- DRAIN 1
- DRAIN 1

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, tadefined to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative