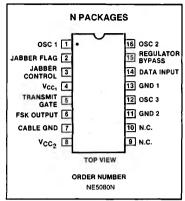
NE5080

DESCRIPTION

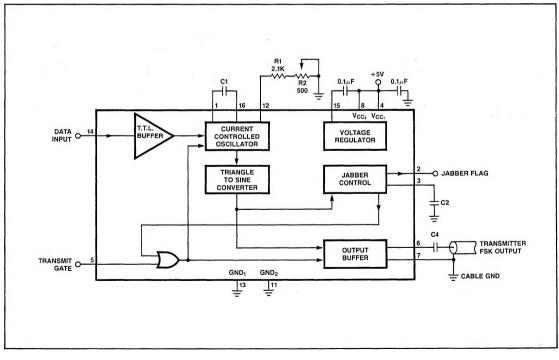
The NE5080 is the transmitter chip, of a two chip set, designed to be the heart of an FSK modem. (The NE5081 is the receiver chip.) The chips are compatible with the IEEE 802.4 standard for a "Single Channel Phase-Continuous-FSK Bus." The specifications shown in this data sheet are those guaranteed when the transmitter is tuned for the frequencies given in the 802 standard. However, both the NE5080 and the NE5081 may be used at other frequencies. The ratio of logic high to logic low frequencies requency.


FEATURES

- Meets IEEE 802.4 standard
- · Data rates to several Megabaud
- Half or full duplex operation
- Jabber function on chip

APPLICATIONS

- Local Area Networks
- Point-to-point communications
- Factory automation
- Process control
- Office automation


PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

SYMBOL & PARAMETER	RATING	UNIT	
Supply Voltage V _{CC1} V _{CC2}	+ 6	v	
Input Voltage Range (Data, Gate)	- 0.3 to + V _{CC}	v	
Power Dissipation	800	mW	
Operating Temperature Range	0 to +70	°C	
Max Junction Temperature	+ 150	°C	
Storage Temperature Range	- 65 to + 150	°C	
Lead Temperature (soldering, 10 sec)	300	°C	

BLOCK DIAGRAM

GENERAL DESCRIPTION

The NE5080 is designed to transmit high frequency asynchronous data on coaxial cable, at rates from DC to 2 Megabaud (see note 1). The chip accepts serial data and transmits it as a periodic signal whose frequency depends on whether the data is high or low.

The device is meant to operate at a frequency of 6.25MHz for a logic high and 3.75MHz for a logic low (see note 2). The frequency is set up by external trimming components; however, the ratio of the high and low frequencies is set internally and cannot be altered.

The FSK output can be turned off by use of the transmit gate pin. When turned off, the transmitter has a high output impedance and the oscillator is disabled.

The length of time a transmitter can transmit can be controlled by the use of the Jabber control pin (see description of Jabber Control Pin).

Jabber Control Pin

During the time the transmitter is transmitting, this pin sources a current. This current can be used to set the maximum time that the transmitter can be on. There are three options that can be used:

- Use the current to charge a capacitor. When the voltage across the cap gets to approx. 1.4V the transmitter will turn off. A logic low applied to pin 3 will reset the Jabber function; an open collector output should be used for this purpose. A logic high applied to the pin will disable the transmitter.
- Use to externally sense the current and have external circuitry to control the length of time the transmitter is on.

NE5080 PIN FUNCTION

PIN	FUNCTION					
1	OSC 1—one end of an external capacitor used to set the carrier frequency					
2	JABBER FLAG—this pin goes to a logic high if the transmitter attempts to transmit for a longer time than allowed by the Jabber control function					
3	JABBER CONTROL—used to control transmit time. See note on Jabber function					
4	V _{CC1} —voltage supply					
5	TRANSMIT GATE—a logic low on this pin will enable the transmitter; a logic high will disable it					
6	TRANSMITTER FSK OUTPUT					
7	CABLE GROUND—the shield of the coax cable should be connected to this pin and to Pin 11					
8	V _{CC2} —Connect to pin 4 close to device					
9	No Connection					
10	No Connection					
11	GROUND 2—connect to Analog ground close to device					
12	OSC 3—a variable resistor between this point and ground is used to set the carrier frequencies.					
13	GROUND 1—connect to Analog ground close to device					
14	DATA INPUT					
15	REGULATOR BYPASS —a bypass capacitor between this pin and V_{CC_1} is required for the internal voltage regulator function					
16	OSC 2—one end of a capacitor that is between pin 1 and pin 16 and is used to set the carrier frequency					

 The pin can be tied to ground and is then not active. Transmission is then controlled solely by the signal at the transmit gate pin.

Jabber Flag Pin

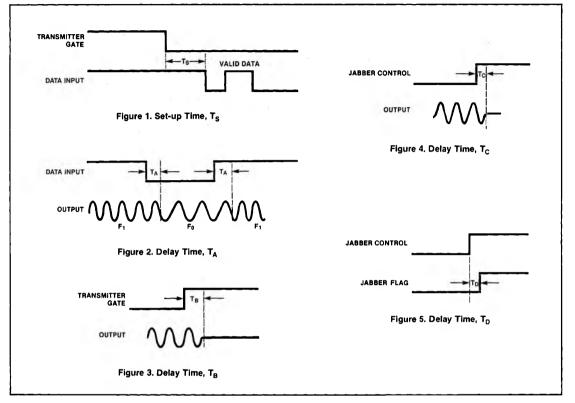
This pin will go to a logic high when the Jabber Control pin is used to shut off the transmitter. It will latch and can be reset by applying a logic low to the Jabber Control pin.

Notes:

- 1. The NE5080 is capable of transmitting up to 1 Megabaud of differential Manchester code at a center frequency of 5MHz.
- Although the chip is designed to meet the requirements of IEEE standard 802.4 (Token-Passing Single Channel Phase-Continuous-FSK Bus), it can be used at other frequencies. See "Determining Component Values."

PARAMETER	SYMBOL	TEST CONDITIONS	NE5080				
PARAMETER	STMBUL	SYMBOL TEST CONDITIONS		Тур.	Max.	UNIT	
Output Frequency (Logic High)	F ₁	Data Input ≥2.0V (See Note 1)	6.17	6.25	6.33	MHz	
Output Frequency (Logic Low)	Fo	Data Input ≤0.8V (See Note 1)	3.67	3.75	3.83	MHz	
Output Amplitude	V ₀	Data Input ≥2.0V or ≤0.8V Output Load = 37.5Ω	0.5		1.0	V _{RMS}	
Output Impedance (gated off)	Roff	Transmit gate ≥2.0V	100			КΩ	
Output Impedance (gated on)	R _{on}	Transmit gate ≤0.8V	1		37.5	Ω	
Output Capacitance	C ₀	Transmit gate ≥2.0V or ≤0.8V			10	pF	
Feed through	VF	Transmit gate ≥2.0V 2.0MHz sq. wave (TTL Levels) Input			1	mV _{RMS}	
Jabber Current	l,	Transmit gate ≤0.8V Input ≥2.0V or ≤0.8V		1.25		μΑ	
Supply Current	lcc	V _{CC1} connected to V _{CC2}		75	100	mA	
LOGIC LEVELS			0			.	
Data Input Logic High Logic Low Input Current Input Current	V _{IH} V _{IL} I _{IH} I _{IL}	Input high voltage Input low voltage Vin = 2.4V Vin = 0.4V	2.0		0.8 40 - 1.6	Volts Volts μA mA	
Transmit Gate Logic High Logic Low Input Current Input Current	V _{IH} VIL I _{IH} I _{IL}	Input high voltage Input low voltage VG = 2.4V VG = 0.4V	2.0		0.8 40 - 1.6	Volts Volts μA mA	
Jabber Flag Logic High Logic Low	V _{OH} V _{OL}	IOH = -400µA IOL=4.0mA	2.4		0.4	Volts Volts	
Jabber Control Logic High Logic Low	V _{IH} VIL	Input high voltage Input low voltage	2.0		0.8	Volts Volts	

ELECTRICAL CHARACTERISTICS $V_{CC_{1,2}} = 4.75 - 5.25V$ $T_A = 0^{\circ}C$ to $+70^{\circ}C$


NOTE

(1) Tuned per instructions in Applications section.

AC ELECTRICAL CHARACTERISTICS

SYMBOL & PARAMETER	TO FROM	CDOM		NE5080			
		TEST CONDITIONS	Min.	Typ.	Max.	UNIT	
Set Up Time — T _S	Data In	Gate On	Figure 1	2	0.1		μS
Delay Time — T _A	Output Freq. Change	Data Transition	Figure 2			150	nS
Delay Time — T _B	Output Disabled	Gate Off	Figure 3		0.4	2	μS
Delay Time — T _C	Output Disabled	Jabber Control	Figure 4			100	nS
Delay Time — T _D	Jabber Flag	Jabber Control	Figure 5			100	nS
Jabber Control Reset Pulse Width (Logic Low)				100			nS

TIMING DIAGRAMS

