DESCRIPTION

The NE5090 addressable relay driver is a high current latched driver, similar in function to the 9934 address decoder. The device has 8 open collector Darlington power outputs, each capable of 150 mA load current. The outputs are turned on or off by respectively loading a logic " 1 " or loglc " 0 " into the device data input. The required output is defined by a 3 bit address. The device must be enabled by a $\overline{C E}$ input line which also serves the function of further address decoding. A common clear input, $\overline{C L R}$, turns all outputs off when a logic " 0 " is applied. The device is packaged in a 16 pin plastic or CERDIP package.

FEATURES

- 8 high current outputs
- Low-loading bus compatible inputs
- Power-on clear ensures safe operation
- Will operate In addressable or demultiplex mode
- Allows random (addressed) data entry
- Easily expandable
- Pin compatlble with 9334

APPLICATIONS

- Relay driver
- Indicator lamp driver
- Triac trigger
- LED display digit driver
- Stepper motor driver

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS
$T_{A}=25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	RATING	UNIT
$\mathrm{V}_{\text {cc }}$ Supply voltage	-0.5 to + 7	V
$V_{\text {IN }} \quad$ Input voltage	-0.5 to +15	V
$V_{\text {OUt }}$ Output voltage	0 to +30	V
IGND Ground current	500	mA
Iout Output current Each output	200	mA
$\mathrm{P}_{\mathrm{D}} \quad$ Power dlssipation'	1	W
Amblent temperature range		${ }^{\circ} \mathrm{C}$
T_{A} NE5090	0 to +70	
T_{J} Junction	150	
$T_{\text {STG }}$ Storage	-65 to + 150	
$T_{\text {sold }}$ Lead soldering temperature (10 sec max)	300	${ }^{\circ} \mathrm{C}$

PIN CONFIGURATION

NOTES:

1. SOL - Released in Large SO package only.
2. SOL and non-standard pinout.
3. SO and non-standard pinouts.

PIN DESIGNATION

PIN NO.	SYMBOL	NAME AND FUNCTION
$1-3$	AO-A2	A 3-bit binary address on these pins defines which of the 8 output latches is to receive the data. $4-7,9-12$ 13
Q0-Q7	D \quadThe device outputs. The data input. When the chip is enabled, this data bit is transferred to the defined output such that: "1" turns output switch "ON" " 0 " turns output switch "OFF"	
14	CE	The chip enable. When this input is low, the output latches will accept data. When CE goes high, all outputs will retain their existing state, regardless of address of data input conditions. The clear input. When CLR goes low all output switches are turned "OFF". The high data input will override the clear function on the addressed latch.

TRUTH TABLE

$x=$ Don't care condition
$Q_{N-1}=$ Previous output state
$\mathrm{L}=$ Low voltage level/"ON" outpul state
$H=$ High voltage level/"OFF" output state
DC ELECTRICAL CHARACTERISTICS $V_{C C}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ unless otherwise specified (NE5090) ${ }^{2}$.

PARAMETER		TEST CONDITIONS	LIMITS			UNIT	
		Min	Typ	Max			
$\begin{aligned} & V_{I H} \\ & V_{I L} \end{aligned}$	Input voltage High Low			2.0		0.8	V
V_{OL}	Output voltage Low	$\mathrm{I}_{\mathrm{OL}}=150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Over temperature		1.05	$\begin{array}{r} 1.30 \\ 1.50 \end{array}$	V	
$I_{\text {IH }}$ $\mathrm{I}_{\text {IL }}$	Input current High Low	$\begin{aligned} & V_{I N}=V_{C C} \\ & V_{I N}=O V \end{aligned}$		$\begin{aligned} & <1.0 \\ & -3.0 \end{aligned}$	$\begin{array}{r} 10 \\ -250 \end{array}$	$\mu \mathrm{A}$	
IOH	Leakage current	$\mathrm{V}_{\text {OUT }}=28 \mathrm{~V}$,		5	250	$\mu \mathrm{A}$	
$\begin{aligned} & \mathrm{I}_{\mathrm{CCL}} \\ & \mathrm{I}_{\mathrm{CCH}} \end{aligned}$	Supply current All outputs low All outputs high	$\mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{~V}$ NE5090		$\begin{aligned} & 35 \\ & 22 \end{aligned}$	$\begin{aligned} & 60 \\ & 50 \end{aligned}$	mA	

NOTES

[^0]SWITCHING CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=2.0 \mathrm{~V}$

PARAMETER		TO	FROM	Min	Typ	Max	UNIT
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay time Low to high ${ }^{1}$ High to low ${ }^{1}$	Output	$\overline{C E}$		$\begin{aligned} & 900 \\ & 130 \end{aligned}$	$\begin{array}{r} 1800 \\ 260 \end{array}$	ns
$t_{\text {PLH }}$ $t_{\text {PHL }}$	Low to high ${ }^{2}$ High to low ${ }^{2}$	Output	Data		$\begin{aligned} & 920 \\ & 130 \end{aligned}$	$\begin{array}{r} 1850 \\ 260 \end{array}$	ns
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Low to high ${ }^{3}$ High to low ${ }^{3}$	Output	Address		$\begin{aligned} & 900 \\ & 130 \end{aligned}$	$\begin{array}{r} 1800 \\ 260 \end{array}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Low to high ${ }^{4}$ High to low ${ }^{4}$	Output	$\overline{C L R}$		920	1850	ns
SWITCHING SETUP REQUIREMENTS							
$\begin{aligned} & \mathbf{t}_{s(H)^{5}} \\ & t_{s(L)^{5}} \end{aligned}$		Chip enable Chip enable	High data Low data	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$		ns
$\mathrm{t}_{\mathrm{s}(\mathrm{A})}{ }^{6}$		Chip enable	Address	0	20		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{n}(\mathrm{H}))^{5}} \\ & \mathrm{t}_{\mathrm{H}(\mathrm{~L})}{ }^{2} \end{aligned}$		Chip enable Chip enable	High data Low data	$\begin{aligned} & +10 \\ & +10 \end{aligned}$	0		ns
$\mathrm{t}_{\mathrm{pw}(\mathrm{E})}{ }^{1}$	Chip enable pulse width ${ }^{1}$			0	20		ns

NOTES

1. See Turn-On and Turn-Off Delays, Enable to Output and Enable Pulse Width timing diagram.
2. See Turn-On and Turn-Off Delays, Data to Output timing diagram.
3. See Turn-On and Turn-Off Delays, Address to Output timing diagram.
4. See Turn-Off Delay, Clear to Output timing diagram.
5. See Setup and Hold Time, Data to Enable timing diagram.
6. See Setup Time, Address to Enable timing diagram.

TIMING DIAGRAMS

TURN-ON AND TURN-OFF DELAYS, DATA TO OUTPUT

Other Inputs: $\overline{\mathrm{CE}}=\mathrm{L}, \quad \overline{\mathrm{CLR}}=\mathrm{H}, \quad \mathrm{A}=$ Stable

TIMING DIAGRAMS (Cont'd)

TYPICAL APPLICATIONS

TYPICAL PERFORMANCE CHARACTERISTICS

OUTPUT VOLTAGE VS LOAD CURRENT

[^0]: 1. Derate powor dissipation as indicated above threshold amblent temperature NE5090 N at $9.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $85^{\circ} \mathrm{C}$
 NE5090 F at $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $65^{\circ} \mathrm{C}$
 2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
