NE5180/NE5181

DESCRIPTION

The NE5180 and NE5181 are octal line receivers designed to Interface data terminal equipment with data communications equipment. These devices meet the requirements of EIA standards RS-232C, RS-423A, RS-422A, and CCITT V.10, V.11, V.28, X.26 and Y.27. The NESTBOR is interacted for use when the data RS-232C, HS-423A, HS-422A, and Corr 1, 10, 411, 425 and X.27. The NE5180 is intended for use where the data transmission rate is up to 200 kb/s. The NE5181 covers the entire range of data rates up to 10 Mb/s. The difference in data rates for the two devices results from the input filtering of the NE5180. These devices also provide a failsafe feature which protects against certain input fault conditions.

FEATURES

- Meets EIA RS-232C/423A/422A and CCITT V.10, V.11, V.28
- Single +5V supply—TTL compatible outputs
- Differential inputs withstand ±25V
- Failsafe feature
- Input noise filter (NE5180 only)
- Internal hysteresis
- Available in SMD PLCC

APPLICATIONS

- High-speed moderns
- High-speed parallel communications
- Computer I/O ports
- Logic level translation

PIN CONFIGURATION

TOP VIEW

FUNCTION TABLE

INPUT	FAILSAFE INPUT	LOGIC OUTPUT		
$V_{10} > 200 \text{mV}^1$	x	н		
Vip < -200mV ¹	x	L		
	0V	L		
Both inputs open or grounded	Vcc	Н		

NOTE:

Vip is defined as the non-inverting terminal input voltage minus the inverting terminal input voltage. 1.

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #	
28-Bin Plastic Dual In-Line (DIP) Package	0 to +70°C	NE5180N	0413B	
28-Bin Blastic Dual In-Line (DIP) Package	0 to +70°C	NE5181N	0413B	
28-Pin Plastic Lead Chin Carrier (PLCC) Package	0 to +70°C	NE5180A	0401F	
29-Pin Plastic Lead Chin Carrier (PLCC) Package	0 to +70°C	NE5181A	0401F	

August 31, 1994

478

853-1635 13721

7110826 0078819 879 📟

NE5180/NE5181

ABSOLUTE MAXIMUM RATINGS

PARAMETER RATING		LINITS	
Power dissipation	800		
Supply voltage	7		
Common mode range	+15		
Differential input voltage	+25		
Outputsink current	50		
Failsafe voltage	-0.3 to View	- mv	
Output short-circuit time			
	PARAMETER Power dissipation Supply voltage Common mode range Differential input voltage Outputsink current Failsafe voltage Output short-circuit time	PARAMETER RATING Power dissipation 800 Supply voltage 7 Common mode range ±15 Differential input voltage ±25 Outputsink current 50 Failsafe voltage -0.3 to V _{CC}	

DC ELECTRICAL CHARACTERISTICS

 $V_{CC} = +5V \pm 5\%$, 0°C $\leq T_A \leq +70$ °C, input common-mode range $\pm 7V$

SYMBOL	PARAMETER	TEST CONDI			NE5180		NE5181	
				Min	Max	Min	Max	
RIN	DC input resistance	$3V \le V_{IN} \le 25V$		3	7	3	7	kΩ
VOFS	Failsafe output voltage	Inputs open or shorted to GND	0 <u>≤</u> l _{OUT} ≤ 8mA, V _{failsafe} = 0V	1	0.45		0.45	
		$0 \ge _{OUT} \ge -400\mu A,$ $V_{failsafe} = V_{CC}$	2.7		2.7		ľ	
Vth	Differential input high ⁴	V _{OUT} ≥ 2.7V,	Rs = 0 ¹	+	0.2	†	0.2	
	threshold	lout = -440μA	R _S = 500 ¹		0.4	1	0.4	l v
VtI	Differential input low ⁴ threshold	V _{OUT} ≲ 0.45V,	$R_S = 0^1$	-0.2		-0.2		v
V.	Hunterneigh		R _S = 500 ¹	-0.4		-0.4		
<u></u>	Hysteresis	FS = 0V or V _{CC} (See Figure 1)		50	140	50	140	mV
VIOC	Open-circuit input voltage				2	<u> </u>	2	v
CI	Input capacitance		·····		30		20	
V _{OH}	High level output voltage	$V_{ID} = 1V$, $I_{OUT} = -440\mu A$		27	<u> </u>	27	30	
Voi	Low level output voltage	$V_{ID} = -1V$	$I_{OUT} = 4mA^2$		0.4		0.4	
	ioroi odipat voltage		$l_{OUT} = 8mA^2$	-	0.45	<u> </u>	0.45	v
los	Short-circuit output current	$V_{10} = 1V^{-3}$		20	100	20	400	
lcc	Supply current	$4.75V \le V_{CC} \le 5.25V$ V $m = -1V$	ES = 0V		100	- 20	100	- ITIA
				<u> </u>	100		100	mA
IN	Input current	Other inputs grounded	VIN = +10V		3.25		3.25	må
			$V_{IN} = -10V$	-3.25		-3.25		1124

NOTES: 1. R₅ is a resistor in series with each input. 2. Measured after 100ms warm-up (at 0°C). 3. Only 1 output may be shorted at a time and then only for a maximum of 1 second. 4. See Figure 1 for threshold and hysteresis definitions.

AC ELECTRICAL CHARACTERISTICS $V_{CC} = +5V \pm 5\%$, $0^{\circ}C \le T_A \le +70^{\circ}C$

SYMBOL PARAMETER	TEST CONDITIONS	NE	NE5180		NE5181	
		Min	Max	Min	Max	UNIT
Propagation delay-low to high	$C_L = 50 pF, V_{ID} = \pm 1 V$		500		100	ns
Propagation delay-high to low	$C_L = 50pF, V_{ID} = \pm 1V$		500		100	
Acceptable input frequency	Unused input grounded, Vip = +200mV ¹		0.1		5.0	ALLAN
Rejectable input frequency	Unused input grounded, Vip = +500mV	5.5	<u>, , ,</u>	NA	5.0	
	PARAMETER Propagation delay—low to high Propagation delay—high to low Acceptable input frequency Rejectable input frequency	PARAMETER TEST CONDITIONS Propagation delay-low to high $C_L = 50pF$, $V_{ID} = \pm 1V$ Propagation delay-high to low $C_L = 50pF$, $V_{ID} = \pm 1V$ Acceptable input frequency Unused input grounded, $V_{ID} = \pm 200 \text{mV}^1$ Rejectable input frequency Unused input grounded, $V_{ID} = \pm 500 \text{mV}^1$	PARAMETER TEST CONDITIONS NEst Propagation delaylow to high $C_L = 50pF$, $V_{ID} = \pm 1V$ Min Propagation delayhigh to low $C_L = 50pF$, $V_{ID} = \pm 1V$ Acceptable input frequency Unused input grounded, $V_{ID} = \pm 200mV^1$ Rejectable input frequency Unused input grounded, $V_{ID} = \pm 500mV$ 5.5	PARAMETER TEST CONDITIONS NE5180 Propagation delay—low to high $C_L = 50pF, V_{ID} = \pm 1V$ 500 Propagation delay—high to low $C_L = 50pF, V_{ID} = \pm 1V$ 500 Acceptable input frequency Unused input grounded, $V_{ID} = \pm 200mV^1$ 0.1 Rejectable input frequency Unused input grounded, $V_{ID} = \pm 500mV$ 5.5	PARAMETER TEST CONDITIONS NE5180 NE5 Propagation delaylow to high $C_L = 50 pF, V_{1D} = \pm 1 V$ 500 500 Propagation delayhigh to low $C_L = 50 pF, V_{1D} = \pm 1 V$ 500 500 Acceptable input frequency Unused input grounded, $V_{1D} = \pm 200 mV^1$ 0.1 100 Rejectable input frequency Unused input grounded, $V_{1D} = \pm 500 mV$ 5.5 NA	PARAMETER TEST CONDITIONS NE5180 NE5181 Propagation delay—low to high $C_L = 50 pF$, $V_{ID} = \pm 1 V$ 500 100 Propagation delay—high to low $C_L = 50 pF$, $V_{ID} = \pm 1 V$ 500 100 Acceptable input frequency Unused input grounded, $V_{ID} = \pm 200 mV^1$ 0.1 5.0 Rejectable input frequency Unused input grounded, $V_{ID} = \pm 500 mV$ 5.5 NA

NOTE: 1. $V_{ID} = \pm 1V$ for NE5181.

August 31, 1994

479

7110826 0078820 590 mm

Philips Semiconductors Linear Products

Product specification

٧H

٧ı

Octal differential line receiver

NE5180/NE5181

FAILSAFE OPERATION

These devices provide a fallsafe operating mode to guard against input fault conditions as defined in RS-422A and RS-423A

standards. These fault conditions are (1) driver in power-off condition, (2) receiver not interconnected with driver, (3) open-circuited Interconnecting cable, and (4) short-circuited interconnecting cable. If one of these four fault conditions occurs at the inputs of a receiver, then the output of that receiver is driven to a known logic level. The receiver is programmed by connecting the failsafe input to V_{CC} or ground. A connection to

APPLICATIONS Vcc 1/8 NE5170 ٧H 1/8 NE5180/ NE5181 ... Vı. THE TO GROUND FOR RS-232C RS-232C/RS-423C Data Transmission VCC ŧ٧ _v 1/8 NE5180 NE5181 ۷н vL · RS-422A LINE DRIVER O VFAILSAFE

AC TEST CIRCUIT

- - ---

August 31, 1994

480

7110826 0078821 427 📟

NE5180/NE5181

 V_{CC} provides a logic "1" output under fault conditions, while a connection to ground provides a logic "0". There are two failsafe pins (F_{S1} and F_{S2}) on the NE5180 or NE5181 where each provides common failsafe control for four receivers.

RS-232 FAILSAFING

The internal failsafe circuitry works by providing a small input offset voltage which can be polarity-switched by using the failsafe control pins. This offset is kept small (approximately 80mV) to avoid degradation of the ± 200 mV input threshold for RS-423 or RS-422 operation. If the positive and negative inputs to any receiver are both shorted to ground or open circuited, the internal offset drives that output to the programmed failsafe state. If only one input open circuits (as may be the case for RS-232 operation), that input will rise to the "input open circuit othage" (approximately 700mV). Since this is much greater than the 200mV threshold, the output will be driven to a state that is independent of the failsafe programming. Failsafe programming can be achieved for non-inverting single-ended applications by raising or lowering the unused input bias voltage as shown in Figure 2. For $V_{BIAS} \equiv$ 1.4, an open (or grounded) INPUT line will be approximately 700mV (oV) and the output will failsafe low. If the resistor divider is not used and V_{BIAS} is connected to ground, the output will failsafe high due to the internal failsafe offset for the INPUT grounded and the 700mV "open circuit input voltage" for the INPUT open circuited. Similar operation holds for an inverting configuration, with V_{BIAS} applied to the positive input and V_{FS} = ground.

INPUT FILTERING (NE5180)

The NE5180 has input filtering for additional noise rejection. This filtering is a function of both signal level and frequency. For the specified input (5.5MHz at \pm 500mV) the input stage filter attenuates the signal such that the output stage threshold levels are not exceeded and no change of state occurs at the output. As the signal amplitude decreases (increases) the rejected frequency decreases (increases).

August 31, 1994

481

🖬 7110856 0078855 363 🎟

NE5180/NE5181

