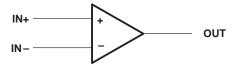
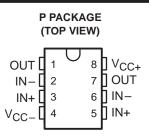
NE5532, NE5532A, NE5532I, NE5532AI DUAL LOW-NOISE OPERATIONAL AMPLIFIERS

SLOS075A - NOVEMBER 1979 - REVISED SEPTEMBER 1990

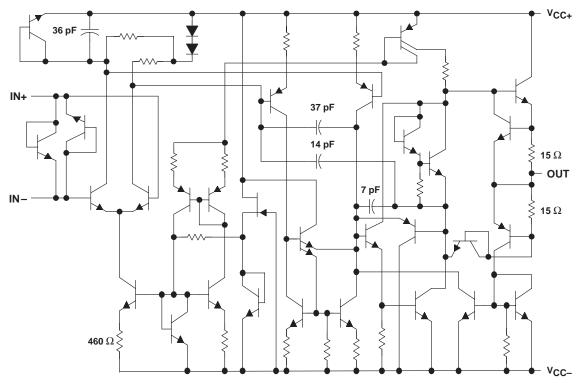

- Equivalent Input Noise Voltage 5 nv/√Hz Typ at 1 kHz
- Unity-Gain Bandwidth . . . 10 MHz Typ
- Common-Mode Rejection Ratio 100 dB Typ
- High DC Voltage Gain . . . 100 V/mV Typ
- Peak-to-Peak Output Voltage Swing 32 V Typ With V_{CC±} = ±18 V and R_L = 600 Ω
- High Slew Rate ... 9 V/μs Typ
- Wide Supply Voltage Range . . . \pm 3 V to \pm 20 V
- Designed to Be Interchangeable With Signetics NE5532 and NE5532A

description


The NE5532 and NE5532A are monolithic high-performance operational amplifiers combining excellent dc and ac characteristics. They feature very low noise, high output drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, high slew rate, input-protection diodes, and output short-circuit protection. These operational amplifiers are internally compensated for unity-gain operation. The NE5532A has specified maximum limits for equivalent input noise voltage.

The NE5532 and NE5532A are characterized for operation from 0°C to 70°C. The NE5532I and NE5532AI are characterized for operation from -40°C to 85°C.

symbol (each amplifier)



NE5532, NE5532A, NE5532I, NE5532AI DUAL LOW-NOISE OPERATIONAL AMPLIFIERS

SLOS075A - NOVEMBER 1979 - REVISED SEPTEMBER 1990

schematic (each amplifier)

Component values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)	
Supply voltage, V _{CC} (see Note 1)	
Input voltage, either input (see Notes 1 and 2)	
Input current (see Note 3)	±10 mA
Duration of output short circuit (see Note 4)	unlimited
Continuous total power dissipation	See Dissipation Rating Table
Continuous total power dissipation	
Operating free-air temperature range: NE5532, NE5532A	
Operating free-air temperature range: NE5532, NE5532A	

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.

3. Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs unless some limiting resistance is used.

4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C	OPERATING FACTOR	T _A = 70°C	T _A = 85°C
	POWER RATING	ABOVE T _A = 25°C	POWER RATING	POWER RATING
Р	1000 mW	8 mW/°C	640 mW	520 mW

NE5532, NE5532A, NE5532I, NE5532AI DUAL LOW-NOISE OPERATIONAL AMPLIFIERS

SLOS075A - NOVEMBER 1979 - REVISED SEPTEMBER 1990

recommended operating conditions

	MIN	NOM MAX	UNIT
Supply voltage, V _{CC+}	5	15	V
Supply voltage, V _{CC} _	-5	-15	V

electrical characteristics, $V_{CC\pm}$ = +15 V, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT		
Via	Input offset voltage	$V_{O} = 0$	$T_A = 25^{\circ}C$			0.5	4	mV	
VIO		vO = 0	T _A = Full range				5	IIIV	
les laput offect ourrent		$T_A = 25^{\circ}C$			10	150	nA		
IIO	Input offset current	T _A = Full range				200	nA		
lun.	Input biog ourrent	$T_A = 25^{\circ}C$			200	800	-		
IВ	Input bias current	T _A = Full range					1000	nA	
VICR	Common-mode input voltage range				±12	±13		V	
Vann	Maximum peak-to-peak output voltage swing	R ₁ ≥ 600 Ω	$V_{CC\pm} = \pm 15 V$		24 26			v	
VOPP		KL 2 000 22	V _{CC±} = ±18 V		30	30 32			
	Large-signal differential voltage amplification	R _L ≥ 600 Ω,	$T_A = 25^{\circ}C$		15	50			
A		$V_{O} = \pm 10 V$	T _A = Full range		10			V/mV	
AVD		R _L ≥ 2 kΩ,	$T_A = 25^{\circ}C$		25	100	0 0///		
		$V_{O} = \pm 10 V$	T _A = Full range		15				
A _{vd}	Small-signal differential voltage amplification	f = 10 kHz	f = 10 kHz			2.2		V/mV	
D	Marchennes and and and a star base do faith	RL = 600 Ω	V _O = ±10 V			140		kHz	
ВОМ	Maximum-output-swing bandwidth		V _{CC±} = ±18 V,	V _O = ±14 V		100	——— кн		
B ₁	Unity-gain bandwidth	RL = 600 Ω,	C _L = 100 pF			10		MHz	
r _i	Input resistance				30	300		kΩ	
z ₀	Output impedance	$A_{VD} = 30 \text{ dB},$	RL = 600 Ω,	f = 10 kHz		0.3		Ω	
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min		70	100		dB		
k _{SVR}	Supply voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC\pm} = \pm 9 V \text{ to } \pm$	$CC\pm = \pm 9 V \text{ to } \pm 15 V,$ $V_O = 0$		80	100		dB	
IOS	Output short-circuit current					38		mA	
ICC	Total supply curent	V _O = 0,	No load			8	16	mA	
	Crosstalk attenuation (VO1/VO2)	V ₀₁ = 10 V peak,	f = 1 kHz			110		dB	

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for T_A is 0°C to 70°C for NE5532/NE5532A and -40°C to 85°C for NE5532I/NE5532AI.

operating characteristics, V_{CC \pm} = ±15 V, T_A = 25°C

PARAMETER		TEST CONDITIONS	NE5532/NE5532I			NE5532A/NE5532AI			UNIT	
	PARAMETER	TEST CONDITIONS	MIN TYP MAX		MIN TYP MAX		UNIT			
SR	Slew rate at unity gain			9			9		V/µs	
	Overshoot factor			10%			10%			
V		f = 30 Hz		8			8	10		
Vn	Equivalent input noise voltage	f = 1 kHz		5			5	6 nV/√Hz		
	Equivalant input poise current	f = 30 Hz		2.7		2.7 2.7			pA/√Hz	
'n	Equivalent input noise current	f = 1 kHz		0.7			0.7			

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated