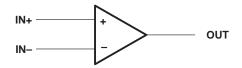
SLOS075D - NOVEMBER 1979 - REVISED SEPTEMBER 2000

- Equivalent Input Noise Voltage 5 nV/√Hz Typ at 1 kHz
- Unity-Gain Bandwidth . . . 10 MHz Typ
- Common-Mode Rejection Ratio . . . 100 dB Typ
- High dc Voltage Gain . . . 100 V/mV Typ
- Peak-to-Peak Output Voltage Swing 32 V Typ With $V_{CC+} = \pm 18 \text{ V}$ and $R_L = 600 \Omega$
- High Slew Rate . . . 9 V/μs Typ
- Wide Supply Voltage Range . . . ±3 V to ±20 V
- Designed to Be Interchangeable With Signetics NE5532 and NE5532A
- Package Options Include Plastic Small-Outline (PS) Package and Standard Plastic (P) DIP

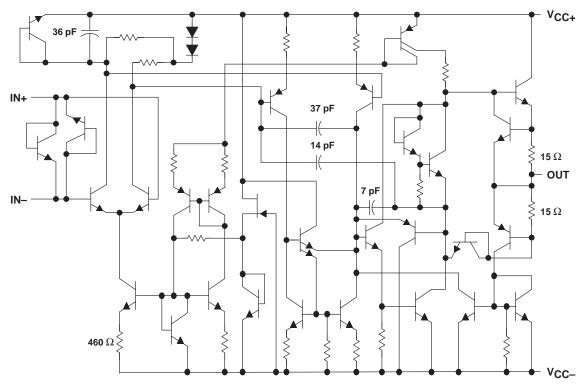
description

The NE5532 and NE5532A are high-performance operational amplifiers combining excellent dc and ac characteristics. They feature very low noise, high output-drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, high slew rate, input-protection diodes, and output short-circuit protection. These operational amplifiers are compensated internally for unity-gain operation. The NE5532A has specified maximum limits for equivalent input noise voltage.


The NE5532 and NE5532A are characterized for operation from 0°C to 70°C.

AVAILABLE OPTIONS

	PACKAGED DEVICES					
TA	PLASTIC DUAL-IN-LINE (P)	PLASTIC SMALL-OUTLINE (PS)				
0°C to 70°C	NE5532P	NE5532PSR				
0 0 10 70 0	NE5532AP	NE5532APSR				


The PS package is only available taped and reeled.

symbol (each amplifier)

schematic (each amplifier)

Component values shown are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC+} (see Note 1)	22 V
Supply voltage, V _{CC} (see Note 1)	–22 V
Input voltage, either input (see Notes 1 and 2)	V _{CC±}
Input current (see Note 3)	±10 mA
Duration of output short circuit (see Note 4)	Unlimited
Package thermal impedance, θ _{JA} (see Note 5): P package	85°C/W
PS package	95°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{Stq}	

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+} and V_{CC-}.

- 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.
- 3. Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs, unless some limiting resistance is used.
- 4. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.

SLOS075D - NOVEMBER 1979 - REVISED SEPTEMBER 2000

recommended operating conditions

	MIN	NOM M	٩X	UNIT
Supply voltage, V _{CC+}	5		15	V
Supply voltage, V _{CC} –	- 5	-	15	V
Operating free-air temperature	0		70	°C

electrical characteristics, $V_{CC\pm}$ = +15 V, T_A = 25°C (unless otherwise noted)

PARAMETER	TEST CONDITIONS [†]			MIN	TYP	MAX	UNIT	
Input offset voltage	\/o = 0	T _A = 25°C		0.5	4	mV		
	ΛQ = 0	$T_A = 0$ °C to 70 °C			5	IIIV		
lanut offect ourment	T _A = 25°C				10	150	nA	
input onset current	$T_A = 0$ °C to 70 °C	$T_A = 0$ °C to 70 °C				200	IIA	
Input bigg ourrent	T _A = 25°C				200	800	nA	
input bias current	$T_A = 0$ °C to 70°C					1000	IIA	
Common-mode input-voltage range		_		±12	±13		V	
Maximum peak-to-peak output-voltage swing	D. >600.0	V _{CC±} = ±15 V		24	26		V	
	KL ≥ 000 12	$V_{CC\pm} = \pm 18 \text{ V}$		30	32		1 '	
Large-signal differential-voltage amplification	$R_1 \geq 600 \Omega$,	T _A = 25°C		15	50			
	$V_{O} = \pm 10 \text{ V}$	$T_A = 0$ °C to 70 °C		10			\//==\/	
	$R_L \ge 2 k\Omega$, $V_O = \pm 10 V$	T _A = 25°C		25	100		V/mV	
		$T_A = 0$ °C to 70 °C		15				
Small-signal differential-voltage amplification	f = 10 kHz				2.2		V/mV	
Maximum-output-swing bandwidth	B 600 O	V _O = ±10 V			140		kHz	
	RL = 600 22,	$V_{CC\pm} = \pm 18 \text{ V},$	$V_0 = \pm 14 \text{ V}$		100		KIIZ	
Unity-gain bandwidth	$R_L = 600 \Omega$,	$C_L = 100 pF$			10		MHz	
Input resistance				30	300		kΩ	
Output impedance	$A_{VD} = 30 \text{ dB},$	$R_L = 600 \Omega$,	f = 10 kHz		0.3		Ω	
Common-mode rejection ratio	V _{IC} = V _{ICR} min			70	100		dB	
Supply voltage rejection ratio $(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC\pm} = \pm 9 \text{ V to } \pm$	15 V,	V _O = 0	80	100		dB	
Output short-circuit current				10	38	60	mA	
Total supply curent	$V_{O} = 0,$	No load			8	16	mA	
Crosstalk attenuation (V _{O1} /V _{O2})	$V_{01} = 10 \text{ V peak},$	f = 1 kHz			110		dB	
· · · · · · · · · · · · · · · · · · ·	Input offset voltage Input offset current Input bias current Common-mode input-voltage range Maximum peak-to-peak output-voltage swing Large-signal differential-voltage amplification Small-signal differential-voltage amplification Maximum-output-swing bandwidth Unity-gain bandwidth Input resistance Output impedance Common-mode rejection ratio Supply voltage rejection ratio (ΔVCC±/ΔVIO) Output short-circuit current Total supply curent		$\label{eq:localization} Input offset voltage $	$\begin{tabular}{ll} \begin{tabular}{ll} Input offset voltage & $V_O=0$ & $\frac{T_A=25^\circ C}{T_A=0^\circ C\ to\ 70^\circ C}$ \\ \hline $T_A=25^\circ C$ & $T_A=25^\circ C$ & $T_A=25^\circ C$ & $T_A=0^\circ C\ to\ 70^\circ C$ \\ \hline $T_A=0^\circ C\ to\ 70^\circ C$ & $T_A=25^\circ C$ & $T_A=0^\circ C\ to\ 70^\circ C$ \\ \hline $Common\text{-mode input-voltage range} & $R_L\geq 600\ \Omega$ & $\frac{VCC\pm=\pm 15\ V}{VCC\pm=\pm 18\ V}$ \\ \hline $Maximum\ peak-to-peak\ output-voltage\ swing} & $R_L\geq 600\ \Omega$ & $\frac{T_A=25^\circ C}{VO=\pm 10\ V}$ & $\frac{T_A=25^\circ C}{T_A=0^\circ C\ to\ 70^\circ C}$ \\ \hline $R_L\geq 2\ k\Omega$, & $T_A=25^\circ C$ & $T_A=0^\circ C\ to\ 70^\circ C$ \\ \hline $Small\ signal\ differential\ voltage\ amplification} & $f=10\ kHz$ & $\frac{VO=\pm 10\ V}{VCC\pm=\pm 18\ V}$ & $V_O=\pm 14\ V$ \\ \hline $Maximum\ output\ swing\ bandwidth} & $R_L=600\ \Omega$, & $C_L=100\ pF$ \\ \hline $Input\ resistance$ & $V_{IC}=\pm 10\ kHz$ \\ \hline $U_{I}=10\ kHz$ & $U_{I}=10\ kHz$ \\ \hline $U_{I}=1$	$ \begin{array}{c} \text{Input offset voltage} \\ \text{Input offset current} \\ \text{Input offset current} \\ \\ \text{Input offset current} \\ \\ \text{Input bias current} \\ \\ \\ \text{Input bias current} \\ \\ \\ \\ \text{Input bias current} \\ \\ \\ \\ \\ \\ \text{Input bias current} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified.

NE5532, NE5532A DUAL LOW-NOISE OPERATIONAL AMPLIFIERS

SLOS075D - NOVEMBER 1979 - REVISED SEPTEMBER 2000

operating characteristics, V_{CC^\pm} = ± 15 V, T_A = $25^{\circ}C$

PARAMETER		TEST CONDITIONS		NE5532			NE5532A			UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	UNII
SR	Slew rate at unity gain				9			9		V/μs
	Overshoot factor	$V_{I} = 100 \text{ mV}, \qquad A_{VD} = R_{L} = 600 \Omega, \qquad C_{L} = 100 \Omega$	1, 00 pF		10%			10%		
V _n Equivalent input noise voltage	f = 30 Hz		8			8		10	nV/√ Hz	
	f = 1 kHz			5			5	6	6 11V/VHZ	
In Equivalent input noise current	f = 30 Hz		2.7				2.7		pA/√ Hz	
	Equivalent input noise current	f = 1 kHz			0.7			0.7		pA/√⊓Z

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated