RF COMMUNICATIONS PRODUCTS

DATA SHEET

NE/SE5539High frequency operational amplifier

Product specification

April 15, 1992

IC11

Philips Semiconductors

PHILIPS

High frequency operational amplifier

NE/SE5539

DESCRIPTION

The NE/SE5539 is a very wide bandwidth, high slew rate, monolithic operational amplifier for use in video amplifiers, RF amplifiers, and extremely high slew rate amplifiers.

Emitter-follower inputs provide a true differential input impedance device. Proper external compensation will allow design operation over a wide range of closed-loop gains, both inverting and non-inverting, to meet specific design requirements.

FEATURES

- Bandwidth
- Unity gain 350MHz
- Full power 48MHz
- GBW 1.2GHz at 17dB
- Slew rate: 600/Vμs
- A_{VOL}: 52dB typical
- Low noise 4nV√Hz typical
- MIL-STD processing available

APPLICATIONS

- High speed datacom
- Video monitors & TV

PIN CONFIGURATION

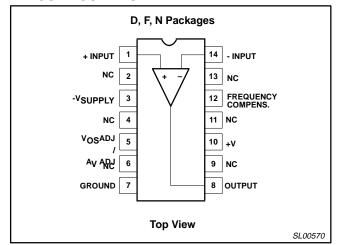


Figure 1. Pin Configuration

- Satellite communications
- Image processing
- RF instrumentation & oscillators
- Magnetic storage
- Military communications

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
14-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	NE5539N	SOT27-1
14-Pin Plastic Small Outline (SO) package	0 to +70°C	NE5539D	SOT108-1
14-Pin Ceramic Dual In-Line Package	0 to +70°C	NE5539F	0581B
14-Pin Ceramic Dual In-Line Package	-55 to +125°C	SE5539F	0581B

ABSOLUTE MAXIMUM RATINGS¹

SYMBOL	PARAMETER	RATING	UNITS
V _{CC}	Supply voltage	±12	V
P _{DMAX}	Maximum power dissipation, T _A = 25°C (still-air) ² F package N package D package	1.17 1.45 0.99	W W W
T _A	Operating temperature range NE SE	0 to 70 -55 to +125	°C °C
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Max junction temperature	150	°C
T _{SOLD}	Lead soldering temperature (10sec max)	+300	°C

NOTES:

- Differential input voltage should not exceed 0.25V to prevent excesive input bias current and common-mode voltage 2.5V. These voltage limits may be exceeded if current is limited to less than 10mA.
- 2. Derate above 25°C, at the following rates:

F package at 9.3mW/°C

N package at 11.6mW/°C

D package at 7.9mW/°C

High frequency operational amplifier

NE/SE5539

EQUIVALENT CIRCUIT



Figure 2. Equivalent Circuit

DC ELECTRICAL CHARACTERISTICS

 V_{CC} = $\pm 8V$, T_A = $25^{\circ}C$; unless otherwise specified.

CVMDOL	DADAMETED	TEST CONDI	FIGNIC		SE5539			LINUTC		
SYMBOL	PARAMETER	TEST CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
	land offertualisms	V 0V D 1000	Over temp		2	5				
V _{OS}	Input offset voltage	$V_O = 0V$, $R_S = 100\Omega$	$T_A = 25^{\circ}C$		2	3		2.5	5	mV
	$\Delta V_{OS}/\Delta T$				5			5		μV/°C
	lanut effect summer		Over temp		0.1	3				
los	Input offset current		$T_A = 25^{\circ}C$		0.1	1			2	μΑ
	$\Delta I_{OS}/\Delta T$				0.5			0.5		nA/°C
	lanut bina aumant		Over temp		6	25				
I _B	Input bias current		$T_A = 25^{\circ}C$		5	13		5	20	μΑ
	ΔΙ _Β /ΔΤ				10			10		nA/°C
CMRR	Common mode rejection ratio	$F = 1kHz, R_S = 100\Omega$	2, V _{CM} ±1.7V	70	80		70	80		dB
CIVIKK	Common mode rejection ratio		Over temp	70	80					uБ
R _{IN}	Input impedance				100			100		kΩ
R _{OUT}	Output impedance				10			10		Ω

High frequency operational amplifier

NE/SE5539

DC ELECTRICAL CHARACTERISTICS (Continued)

 V_{CC} = $\pm 8V,\, T_{A}$ = $25^{\circ}C;$ unless otherwise specified.

SYMBOL	DADAMETED	TEST CONDITIO	NC		SE5539			NE5539		UNITS
STWIBUL	PARAMETER	TEST CONDITION	ONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{OUT}	Output voltage swing	$R_L = 150\Omega$ to GND and 470Ω to $-V_{CC}$	+Swing -Swing				+2.3 -1.7	+2.7 -2.2		V
V	Output voltage quing	$R_L = 25\Omega$ to GND Over temp	+Swing -Swing	+2.3 -1.5	+3.0 -2.1					V
V _{OUT}	Output voltage swing	$R_L = 25\Omega$ to GND $T_A = 25^{\circ}C$	+Swing -Swing	+2.5 -2.0	+3.1 -2.7					ľ
	Dogitivo gunnly gurrant	$V_O = 0$, $R_1 = \infty$, Ove		14	18				mA	
I _{CC+}	Positive supply current	$V_0 = 0, R_1 = \infty, T_A = \infty$		14	17		14	18	IIIA	
	No gotivo ovenhy overent	$V_O = 0$, $R_1 = \infty$, Ove		11	15				^	
Icc-	Negative supply current	$V_{O} = 0, R_{1} = \infty, T_{A} = 0$	$V_{O} = 0, R_{1} = \infty, T_{A} = 25^{\circ}C$			14		11	15	mA
PSRR	Dower cumply rejection ratio	$\Delta V_{CC} = \pm 1 V$, Over	temp		300	1000				μV/V
PSKK	Power supply rejection ratio	$\Delta V_{CC} = \pm 1 V, T_A =$	25°C					200	1000	μν/ν
A _{VOL}	Large signal voltage gain	$V_O = +2.3V, -1.7V, R_L = 0.000$ GND, 470Ω to -\					47	52	57	dB
A _{VOL}	Large signal voltage gain	V _O = +2.3V, -1.7V	Over temp							dB
		$R_L = 2\Omega$ to GND	T _A = 25°C				47	52	57	
A _{VOL}	Large signal voltage gain	V _O = +2.5V, -2.0V	Over temp	46		60				dB
		$R_L = 2\Omega$ to GND $T_A = 25^{\circ}C$		48	53	58				

DC ELECTRICAL CHARACTERISTICS

 V_{CC} = $\pm 6V,\, T_{A}$ = $25^{\circ}C;$ unless otherwise specified.

CVMDOL	DADAMETED	TEST O	ONDITION	<u> </u>		SE5539		UNITS	
SYMBOL	PARAMETER	IEST C	ONDITIONS	3	MIN	TYP	MAX	UNITS	
V	Input offset voltage			Over temp		2	5	mV	
Vos	input onset voltage			T _A = 25°C		2	3	IIIV	
1	Input offset current			Over temp		0.1	3	μА	
los	input onset current			T _A = 25°C		0.1	1	μΑ	
	Input bias current			Over temp		5	20		
l _B	Input bias current			T _A = 25°C		4	10	μΑ	
CMRR	Common-mode rejection ratio	$V_{CM} = \pm 1.3$	$3V, R_S = 10$	Ω	70	85		dB	
1	Positive aupply aurrent			Over temp		11	14	mA	
Icc+	Positive supply current			T _A = 25°C		11	13	IIIA	
	Negative supply current			Over temp		8	11	mA	
Icc-	Negative supply current			$T_A = 25^{\circ}CmA$		8	10	ША	
PSRR	Dower supply rejection ratio	AV/ - ±1\/		Over temp		300	1000	μV/V	
FORK	Power supply rejection ratio	$\Delta V_{CC} = \pm 1 V$		T _A = 25°C				μν/ν	
			Over	+Swing	+1.4	+2.0			
V	Output voltage awing	$R_L = 150\Omega$ to GND	temp	-Swing	-1.1	-1.7		_V	
V _{OUT}	Output voltage swing	Jutput voltage swing and	and 390Ω to -V _{CC}	T _A =	+Swing	+1.5	+2.0		7 °
			25°C	-Swing	-1.4	-1.8			

High frequency operational amplifier

NE/SE5539

AC ELECTRICAL CHARACTERISTICS

 V_{CC} = $\pm 8V$, R_L = 150 Ω to GND and 470 Ω to -V_{CC}, unless otherwise specified.

CVMDOL	DADAMETED	TEST CONDITIONS		SE5539			NE5539		UNITS
SYMBOL	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
BW	Gain bandwidth product	$A_{CL} = 7, V_O = 0.1 V_{P-P}$		1200			1200		MHz
	Small signal bandwidth	$A_{CL} = 2, R_{L} = 150\Omega^{1}$		110			110		MHz
ts	Settling time	$A_{CL} = 2$, $R_L = 150\Omega^1$		15			15		ns
SR	Slew rate	$A_{CL} = 2$, $R_L = 150\Omega^1$		600			600		V/μs
t _{PD}	Propagation delay	$A_{CL} = 2, R_L = 150\Omega^1$		7			7		ns
	Full power response	$A_{CL} = 2$, $R_{L} = 150\Omega^{1}$		48			48		MHz
	Full power response	$A_V = 7, R_L = 150\Omega^1$		20			20		MHz
	Input noise voltage	$R_S = 50\Omega$, 1MHz		4			4		nV/√Hz
	Input noise current	1MHz		6			6		pA/√Hz

NOTES:

AC ELECTRICAL CHARACTERISTICS

 V_{CC} = ± 6 V, R_L = 150 $\!\Omega$ to GND and 390 $\!\Omega$ to -V $_{CC}$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS		SE5539		UNITS
STWIBUL	PARAWETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
BW	Gain bandwidth product	A _{CL} = 7		700		MHz
DVV	Small signal bandwidth	$A_{CL} = 2^1$		120		IVITZ
ts	Settling time	$A_{CL} = 2^1$		23		ns
SR	Slew rate	A _{CL} = 2 ¹		330		V/μs
t _{PD}	Propagation delay	$A_{CL} = 2^1$		4.5		ns
	Full power response	$A_{CL} = 2^1$		20		MHz

NOTES:

TYPICAL PERFORMANCE CURVES

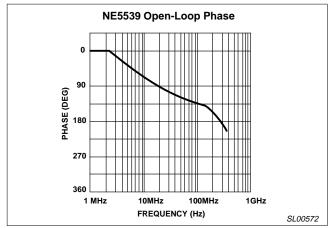


Figure 3. NE5539 Open-Loop Phase

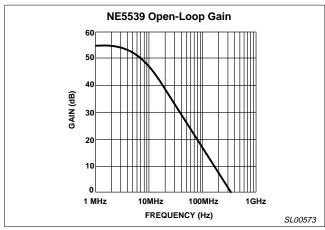


Figure 4. NE5539 Open-Loop Gain

1992 Apr 15 5

^{1.} External compensation.

^{1.} External compensation.

TYPICAL PERFORMANCE CURVES (Continued)

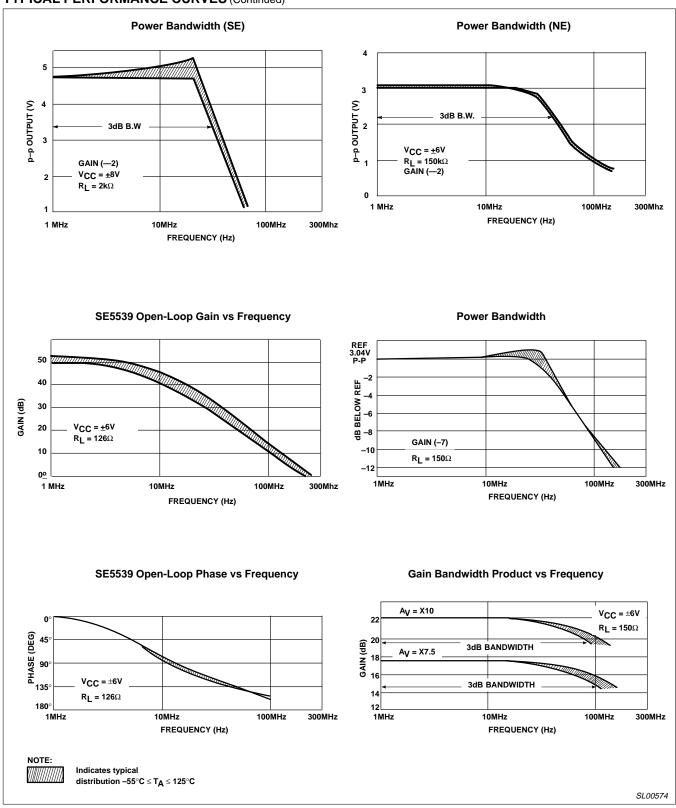


Figure 5. Typical Performance Curves

1992 Apr 15 6

High frequency operational amplifier

NE/SE5539

CIRCUIT LAYOUT CONSIDERATIONS

As may be expected for an ultra-high frequency, wide-gain bandwidth amplifier, the physical circuit is extremely critical.

Bread-boarding is not recommended. A double-sided copper-clad printed circuit board will result in more favorable system operation. An example utilizing a 28dB non-inverting amp is shown in Figure 6.

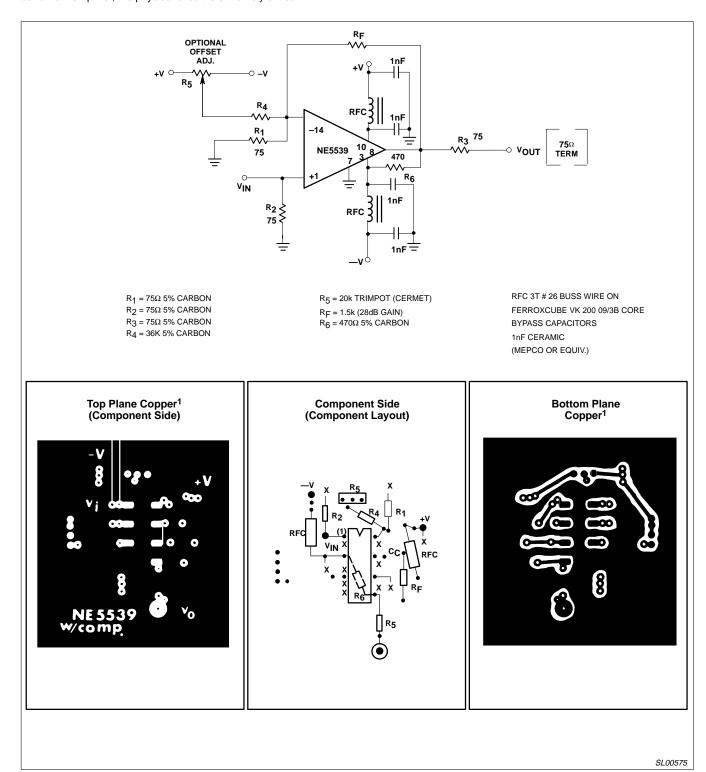


Figure 6. 28dB Non-Inverting Amp Sample PC Layout

1992 Apr 15 7

High frequency operational amplifier

NE/SE5539

NE5539 COLOR VIDEO AMPLIFIER

The NE5539 wideband operational amplifier is easily adapted for use as a color video amplifier. A typical circuit is shown in Figure 7 along with vector-scope1 photographs showing the amplifier differential gain and phase response to a standard five-step modulated staircase linearity signal (Figures 8, 9 and 10). As can be seen in Figure 9, the gain varies less than 0.5% from the bottom to the top of the staircase. The maximum differential phase shown in Figure 10 is approximately +0.1°.

The amplifier circuit was optimized for a 75Ω input and output termionation impedance with a gain of approximately 10 (20dB).

NOTE:

1. The input signal was 200mV and the output 2V. V_{CC} was $\pm 8V$.

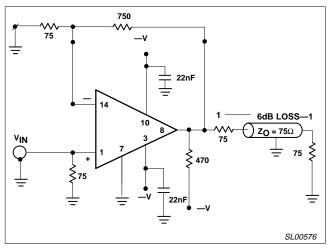


Figure 7. NE5539 Video Amplifier

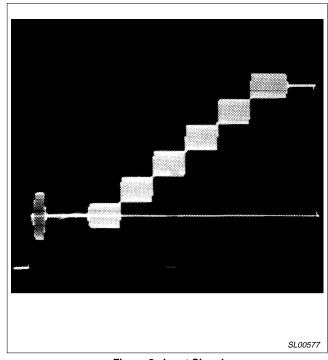


Figure 8. Input Signal

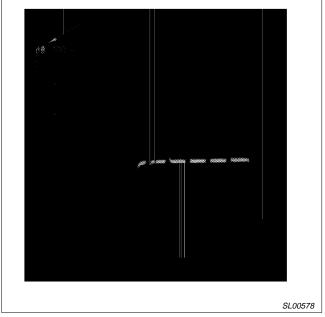


Figure 9. Differential Gain < 0.5%

NOTE:

Instruments used for these measurements were Tektronix 146 NTSC test signal generator, 520A NTSC vectorscope, and 1480 waveform monitor.

High frequency operational amplifier

NE/SE5539

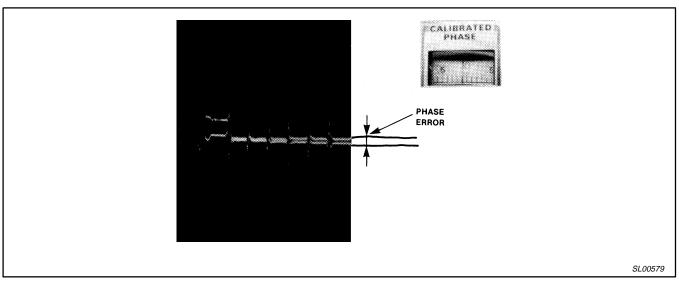


Figure 10. Differential Gain +0.1°

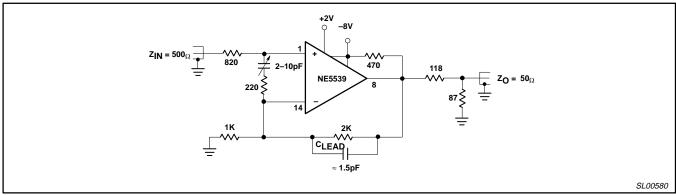
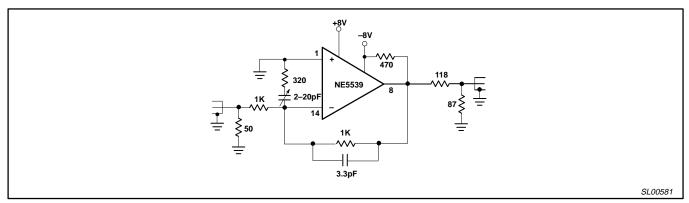
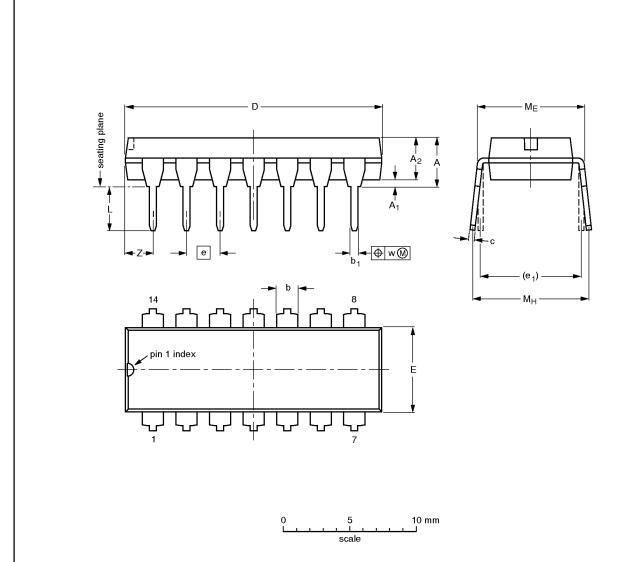


Figure 11. Non-Inverting Follower




Figure 12. Inverting Follower

High frequency operational amplifier

NE/SE5539

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

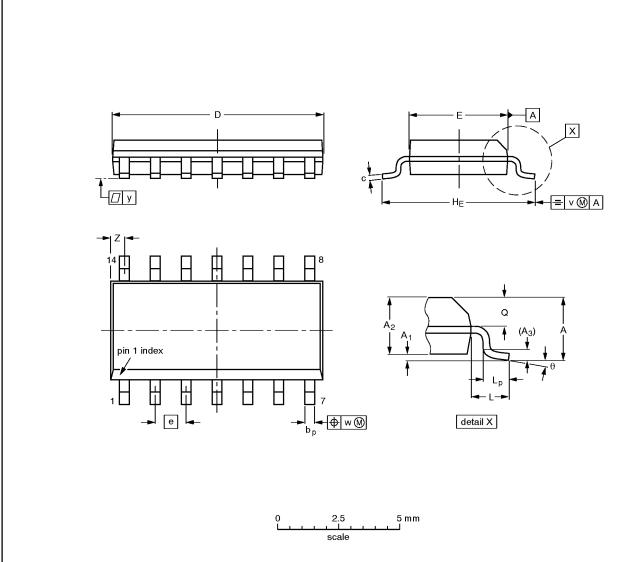
DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001AA				92-11-17 95-03-11


April 15, 1992 10

High frequency operational amplifier

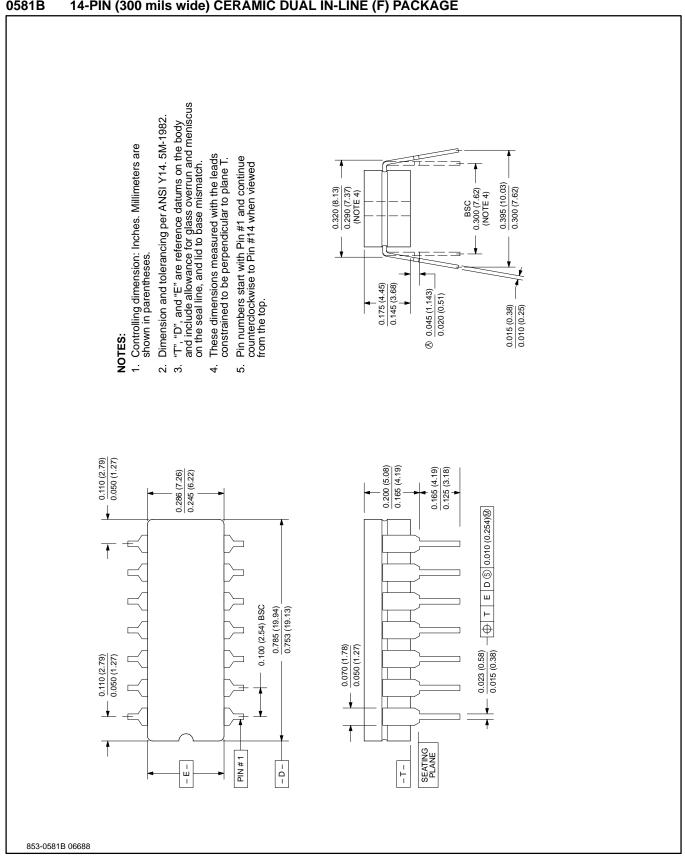
NE/SE5539

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	Α1	A ₂	A ₃	рb	O	D ⁽¹⁾	E ⁽¹⁾	Φ	HE	٦	Lp	Ø	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	1 // //60	0.0098 0.0039		0.01		0.0098 0.0075		0.16 0.15	0.050	0.24 0.23	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°


Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	l		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	ĺ
SOT108-1	076E06\$	MS-012AB			€	91-08-13 95-01-23	

April 15, 1992

0581B 14-PIN (300 mils wide) CERAMIC DUAL IN-LINE (F) PACKAGE

April 15, 1992 12

High frequency operational amplifier

NE/SE5539

	DEFINITIONS								
Data Sheet Identification	Product Status	Definition							
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.							
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.							
Product Specification Full Production		This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.							

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act.

© Copyright Philips Electronics North America Corporation 1992

All rights reserved. Printed in U.S.A.