
INTEGRATED CIRCUITS

Product specification

October 20, 1987

IC11

Philips Semiconductors

NE5592

DESCRIPTION

The NE5592 is a dual monolithic, two-stage, differential output, wideband video amplifier. It offers a fixed gain of 400 without external components and an adjustable gain from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers.

FEATURES

- 110MHz unity gain bandwidth
- Adjustable gain from 0 to 400
- Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components

PIN CONFIGURATION

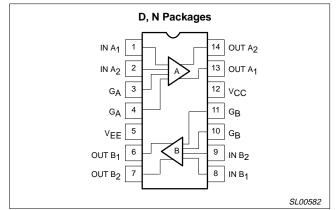


Figure 1. Pin Configuration

APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
14-Pin Plastic Dual In-Line Package (DIP)	0 to 70°C	NE5592N	SOT27-1
14-Pin Small Outline (SO) package	0 to 70°C	NE5592D	SOT108-1

EQUIVALENT CIRCUIT

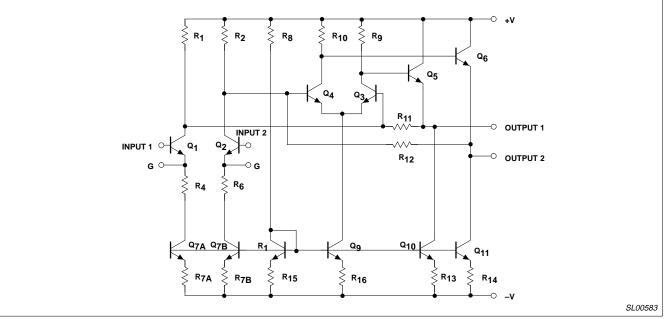


Figure 2. Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS

T_A=25°C, unless otherwise specified.

SYMBOL	PARAMETER	RATING	UNIT	
V _{CC}	Supply voltage	±8	V	
V _{IN}	Differential input voltage	±5	V	
V _{CM}	Common mode Input voltage	±6	V	
IOUT	Output current	10	mA	
T _A	Operating temperature range NE5592	0 to +70		
T _{STG}	Storage temperature range	-65 to +150	°C	
P _{D MAX}	Maximum power dissipation,			
	T _A =25°C (still air) ¹			
	D package	1.03	W	
	N package	1.48	W	

NOTES:

1. Derate above 25°C at the following rates:

D package 8.3mW/°C N package 11.9mW/°C

DC ELECTRICAL CHARACTERISTICS

 T_A =+25°C, V_{SS} =±6V, V_{CM} =0, unless otherwise specified. Recommended operating supply voltage is V_S = ±6.0V, and gain select pins are connected together.

OVMDO	PARAMETER	TEST CONDITIONS		LIMITS			
SYMBOL		TEST CONDITIONS	Min	Тур	Max	UNITS	
A _{VOL}	Differential voltage gain	R _L =2kΩ, V _{OUT} =3V _{P-P}	400	480	600	V/V	
R _{IN}	Input resistance		3	14		kΩ	
C _{IN}	Input capacitance			2.5		pF	
I _{OS}	Input offset current			0.3	3	μA	
I _{BIAS}	Input bias current			5	20	μΑ	
	Input noise voltage	BW 1kHz to 10MHz		4		nV/√Hz	
V _{IN}	Input voltage range		±1.0			V	
CMRR	Common-mode rejection ratio	V _{CM} ± 1V, f<100kHz V _{CM} ± 1V, f=5MHz	60	93 87		dB dB	
PSRR	Supply voltage rejection ratio	$\Delta V_{S} = \pm 0.5 V$	50	85		dB	
	Channel separation	V_{OUT} =1 V_{P-P} ; f=100kHz (output referenced) R _L =1k Ω	65	70		dB	
V _{OS}	Output offset voltage gain select pins open	R _L =∞ R _L =∞		0.5 0.25	1.5 0.75	V V	
V _{CM}	Output common-mode voltage	R _L =∞	2.4	3.1	3.4	V	
V _{OUT}	Output differential voltage swing	$R_L=2k\Omega$	3.0	4.0		V	
R _{OUT}	Output resistance			20		Ω	
I _{CC}	Power supply current (total for both sides)	R _L =∞		35	44	mA	

NE5592

DC ELECTRICAL CHARACTERISTICS

 $V_{SS}=\pm 6$ V, $V_{CM}=0$, $0^{\circ}C \leq T_A \leq 70^{\circ}C$, unless otherwise specified. Recommended operating supply voltage is $V_S = \pm 6.0$ V, and gain select pins are connected together.

	DADAMETED	TEAT CONDITIONS		LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNITS	
A _{VOL}	Differential voltage gain	R _L =2kΩ, V _{OUT} =3V _{P-P}	350	430	600	V/V	
R _{IN}	Input resistance		1	11		kΩ	
I _{OS}	Input offset current				5	μA	
I _{BIAS}	Input bias current				30	μΑ	
V _{IN}	Input voltage range		±1.0			V	
CMRR	Common-mode rejection ratio	$V_{CM} \pm$ 1V, f<100kHz R _S = ϕ	55			dB	
PSRR	Supply voltage rejection ratio	$\Delta V_{S} = \pm 0.5 V$	50			dB	
	Channel separation	$V_{OUT}=1V_{P-P}$; f=100kHz (output referenced) R _L =1k Ω		70		dB	
V _{OS}	Output offset voltage gain select pins connected together	R _L =∞			1.5	V	
	gain select pins open	R _L =∞			1.0	V	
Vout	Output differential voltage swing	$R_L=2k\Omega$	2.8			V	
ICC	Power supply current (total for both sides)	R _L =∞			47	mA	

AC ELECTRICAL CHARACTERISTICS

 T_A =+25°C V_{SS} =±6V, V_{CM} =0, unless otherwise specified. Recommended operating supply voltage V_S =±6.0V. Gain select pins connected together.

SYMBOL	PARAMETER	TEST CONDITIONS		UNITS		
STMBOL	FARAIVIETER	TEST CONDITIONS	Min	Тур	Max	
BW	Bandwidth	V _{OUT} =1V _{P-P}		25		MHz
t _R	Rise time			15	20	ns
t _{PD}	Propagation delay	V _{OUT} =1V _{P-P}		7.5	12	ns

TEST CIRCUITS $T_A=25^{\circ}C$ unless otherwise specified.

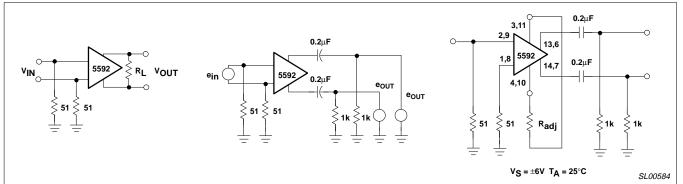
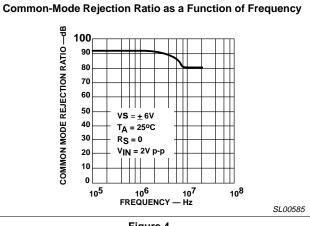
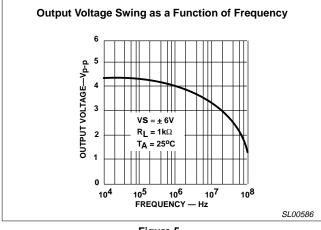



Figure 3. Test Circuits


Philips Semiconductors

NE5592

TYPICAL PERFORMANCE CHARACTERISTICS

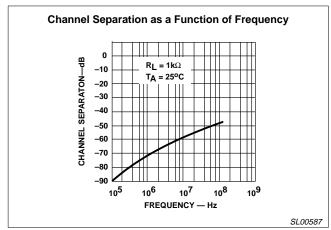
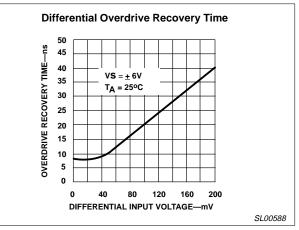



Figure 6.

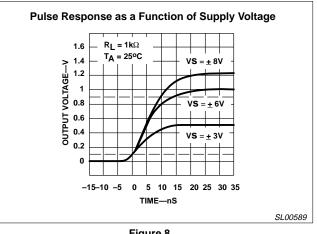


Figure 8.

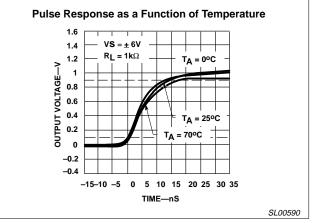
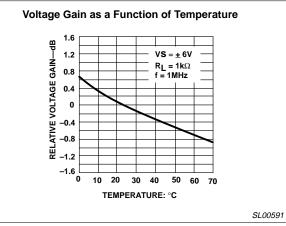



Figure 9.

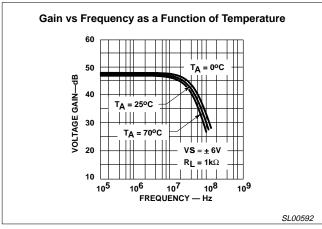


Figure 11.

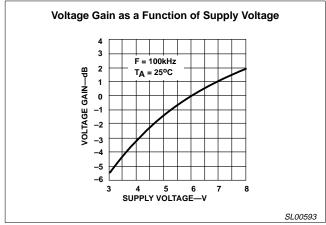
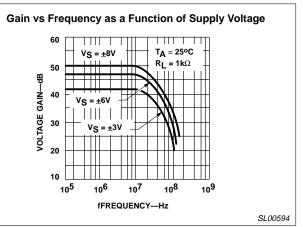
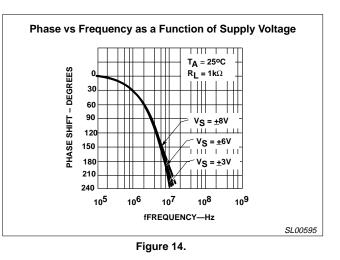




Figure 12.

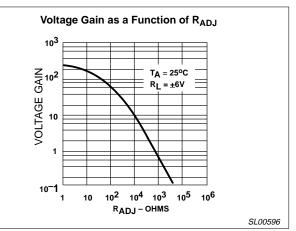
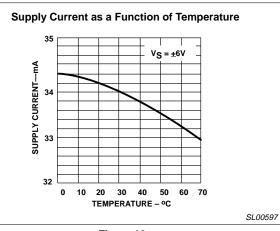
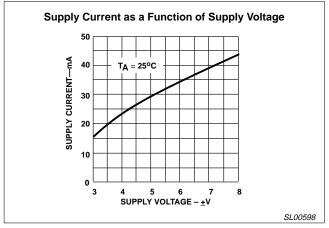




Figure 15.

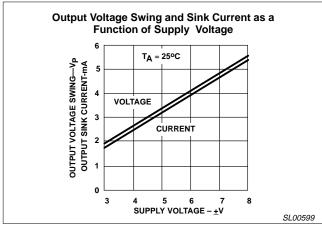
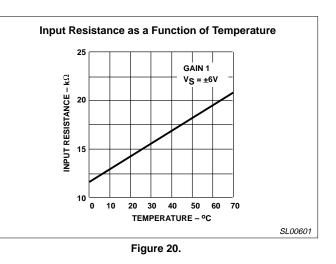
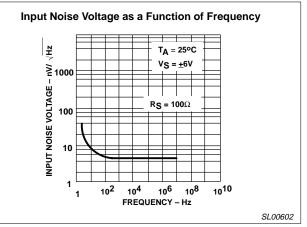
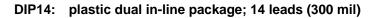
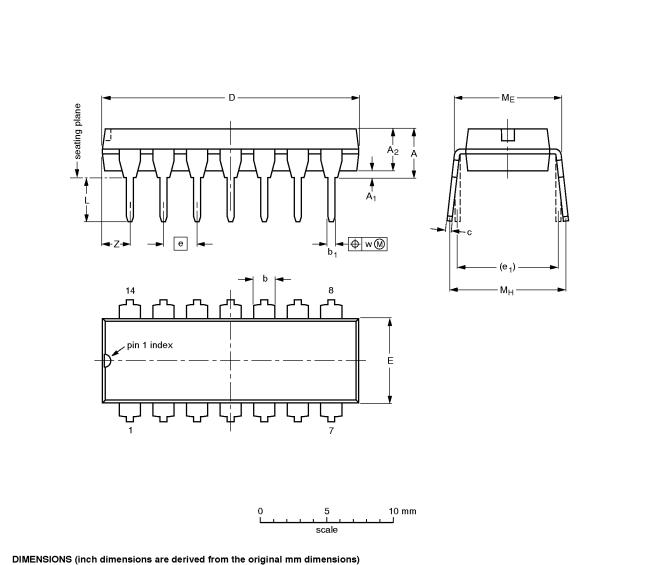



Figure 18.

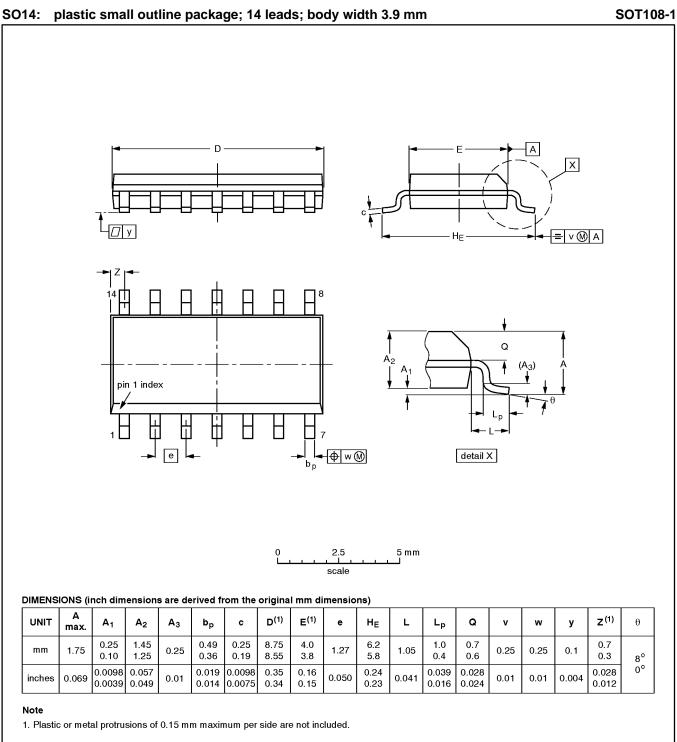




Figure 21.

NE5592

SOT27-1

Product specification


UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	c	D ⁽¹⁾	E ⁽¹⁾	e	e ₁	L	M _E	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001AA				-92-11-17 95-03-11

Product specification

OUTLINE		EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT108-1	076E06S	MS-012AB				91-08-13- 95-01-23

	DEFINITIONS						
Data Sheet Identification	Product Status	Definition					
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.					
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.					
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.					

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1987 All rights reserved. Printed in U.S.A.