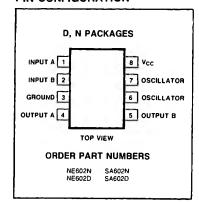
DOUBLE BALANCED MIXER AND OSCILLATOR

Preliminary

DESCRIPTION

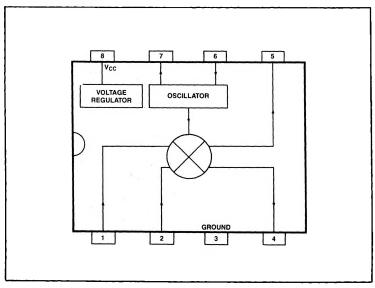
The SA/NE602 is a monolithic Double Balanced Mixer with on-board oscillator and voltage regulator. The oscillator can be used as a buffer for external injection. The design is optimized for frequency conversion applications up to 200MHz and has excellent noise and 3rd order intermodulation performance. The SA/NE602 is available in a 8 lead dual in line plastic package and 8 lead SO (Surface mounted miniature package).


FEATURES

- Low current consumption: 2.4mA typical
- High input and oscillator frequency operation up to 200MHz
- High third order intercept point: 15 dBm referred to matched input
- Excellent noise figure: 5.0dB typical at 45 MHz
- Low external count; suitable for crystal/ceramic filters

APPLICATIONS

- HF and VHF frequency conversion
- Cellular radio mixer/oscillator
- Communication receivers
- Instrumentation frequency converters
- VHF walkie talkie


PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS

PARAMETER	RATING	UNIT	
Maximum operating voltage	9	V	
Storage temperature	-65 to +150	°C	
Operating temperature NE602 SA602	0 to +70 -40 to +85	°C	

BLOCK DIAGRAM

DOUBLE BALANCED MIXER AND OSCILLATOR

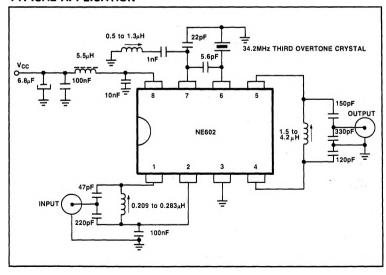
Preliminary

DC ELECTRICAL CHARACTERISTICS: TA = 25°C, VCC = 6V.

SYMBOL AND PARAMETER	SA/NE602			
	Min	Тур	Max	UNIT
Power supply voltage range	4.5		8.0	V
D.C. current drain	<u> </u>	2.4	2.7	mA
Input signal frequency		1 – 1	200	MHz
Oscillator frequency			200	MHz
Noise figure @ 45MHz		5.0	6	dB
Third order intercept point		- 15	- 17	dBm
Mixer input resistance	1.5			kΩ
Mixer input capacitance	_	3	3.5	pF
Mixer output resistance ¹		2 x 1.5		kΩ

NOTE:

CIRCUIT DESCRIPTION


The NE602 utilizes an active double balanced mixer. The RF input port (pins 1 and 2) can be used in either a symmetrical or an asymmetrical configuration. The RF input port has a resistance of $1.5 \mathrm{K}\Omega$ shunted by $3.0 \mathrm{pF}$. In order to be used as an asymmetrical configuration, one of the two input pins (1 or 2) must be bypassed to ground with a capacitor. The RF

input port does not need any external bias and should not be DC grounded. An external DC path between pins 1 and 2 is allowed.

The local oscillator is an emmitter-follower circuit and is capable of many types of oscillator configurations. Pin 6 (oscillator base) and pin 7 (oscillator emitter) do not need any external bias circuitry, but only pin 6 may have a DC path to V_{CC}. Pin 6 can be used for external oscillator or for frequency synthesizer injection.

The NE602 output pins can be used in a single-ended or push-pull configuration. There are internal 1.5K Ω resistors connected to V_{CC} for each output pin (4 and 5); therefore no external bias is needed. Pins 4 and/or 5 may have a DC path to V_{CC} .

TYPICAL APPLICATION

^{1.} Each output pin is internally connected to V_{CC} through a 1.5 (nominal) $k\Omega$ resistor.