IGBT

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop (FS) Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. The IGBT is well suited for half bridge resonant applications. Incorporated into the device is a soft and fast co–packaged free wheeling diode with a low forward voltage.

Features

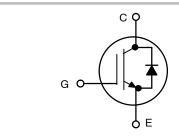
- Low Saturation Voltage using Trench with Fieldstop Technology
- Low Switching Loss Reduces System Power Dissipation
- Low Gate Charge
- Soft, Fast Free Wheeling Diode
- These are Pb-Free Devices

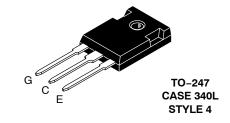
Typical Applications

- Inductive Heating
- Soft Switching

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-emitter voltage	V_{CES}	600	V
Collector current @ Tc = 25°C @ Tc = 100°C	I _C	80 40	Α
Pulsed collector current, T _{pulse} limited by T _{Jmax}	I _{CM}	200	Α
Diode forward current @ Tc = 25°C @ Tc = 100°C	I _F	80 40	Α
Diode pulsed current, T _{pulse} limited by T _{Jmax}	I _{FM}	200	Α
Gate-emitter voltage	V_{GE}	±20	V
Power Dissipation @ Tc = 25°C @ Tc = 100°C	P _D	250 50	W
Operating junction temperature range	TJ	-55 to +150	°C
Storage temperature range	T _{stg}	-55 to +150	°C
Lead temperature for soldering, 1/8" from case for 5 seconds	T _{SLD}	260	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.



ON Semiconductor®

http://onsemi.com

40 A, 600 V V_{CEsat} = 2.0 V E_{off} = 0.4 mJ

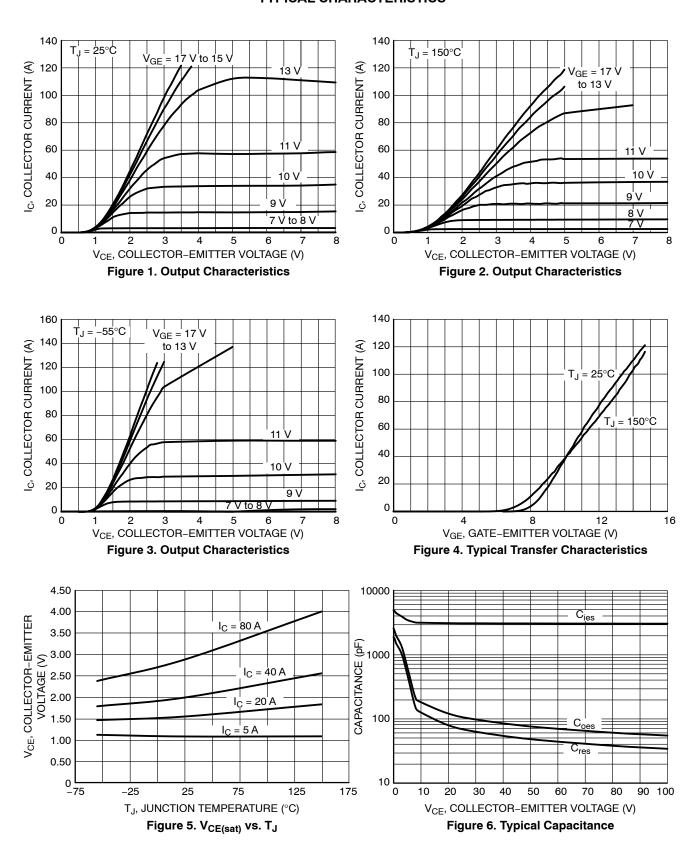
MARKING DIAGRAM

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTB40N60IHLWG	TO-247 (Pb-Free)	30 Units / Rail


THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction-to-case, for IGBT	$R_{ heta JC}$	0.87	°C/W
Thermal resistance junction-to-case, for Diode	$R_{ heta JC}$	1.46	°C/W
Thermal resistance junction-to-ambient	$R_{ hetaJA}$	40	°C/W

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
STATIC CHARACTERISTIC	•	•				
Collector-emitter breakdown voltage, gate-emitter short-circuited	$V_{GE} = 0 \text{ V, I}_{C} = 500 \mu\text{A}$	V _{(BR)CES}	600	_	-	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 40 A V _{GE} = 15 V, I _C = 40 A, T _J = 150°C	V _{CEsat}	-	2.0 2.6	2.4	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_{C} = 150 \mu A$	V _{GE(th)}	4.5	5.5	6.5	V
Collector-emitter cut-off current, gate- emitter short-circuited	V _{GE} = 0 V, V _{CE} = 600 V V _{GE} = 0 V, V _{CE} = 600 V, T _{J =} 150°C	I _{CES}	_	_ _	0.2 2	mA
Gate leakage current, collector-emitter short-circuited	V _{GE} = 20 V , V _{CE} = 0 V	I _{GES}	-	-	100	nA
DYNAMIC CHARACTERISTIC						
Input capacitance		C _{ies}	-	3100	-	pF
Output capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 1 MHz	C _{oes}	-	120	-	
Reverse transfer capacitance	1	C _{res}	-	80	-	
Gate charge total		Q_g		130		nC
Gate to emitter charge	V _{CE} = 480 V, I _C = 40 A, V _{GE} = 15 V	Q _{ge}		29		
Gate to collector charge	1	Q _{gc}		67		
SWITCHING CHARACTERISTIC, INDUC	TIVE LOAD					
Turn-on delay time		t _{d(on)}		70		ns
Rise time	T _J = 25°C	t _r		40		
Turn-off delay time	$T_J = 25^{\circ}C$ $V_{CC} = 400 \text{ V, } I_C = 40 \text{ A}$ $R_0 = 10 \Omega$	t _{d(off)}		140		
Fall time	$R_g = 10 \Omega$ $V_{GE} = 0 \text{ V/ } 15 \text{V}$	t _f		70		
Turn-off switching loss	1	E _{off}		0.4		mJ
Turn-on delay time		t _{d(on)}		70		ns
Rise time	T _J = 150°C	t _r		40		
Turn-off delay time	$V_{CC} = 400 \text{ V}, I_{C} = 40 \text{ A}$	t _{d(off)}		140		
Fall time	$R_g = 10 \Omega$ $V_{GE} = 0 \text{ V} / 15 \text{V}$	t _f		90		
Turn-off switching loss	1	E _{off}		0.8		mJ
DIODE CHARACTERISTIC						
Forward voltage	V _{GE} = 0 V, I _F = 40 A V _{GE} = 0 V, I _F = 40 A, T _J = 150°C	V _F		1.3 1.35	1.5	V
Reverse recovery time	T _J = 25°C	t _{rr}		400		ns
Reverse recovery charge	I _F = 40 A, V _R = 200 V di _F /dt = 200 A/μs	Q _{rr}		5500		nc
Reverse recovery current	1	I _{rrm}		25		Α

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

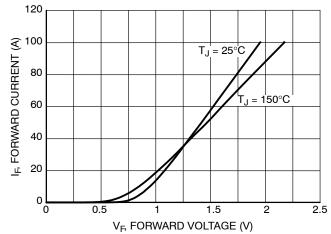


Figure 7. Diode Forward Characteristics

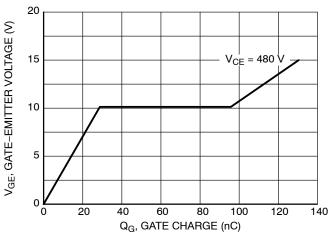


Figure 8. Typical Gate Charge

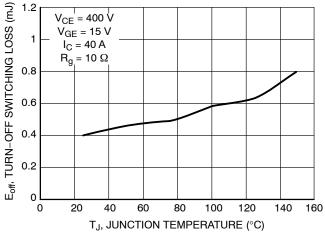


Figure 9. Switching Loss vs. Temperature

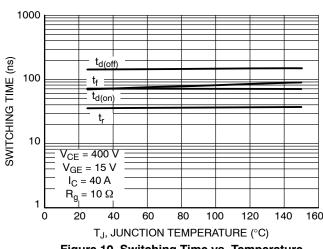


Figure 10. Switching Time vs. Temperature

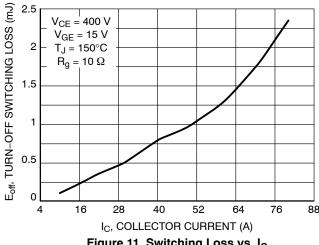


Figure 11. Switching Loss vs. I_C

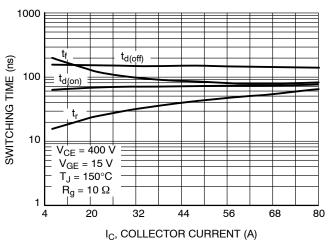


Figure 12. Switching Time vs. Temperature

TYPICAL CHARACTERISTICS

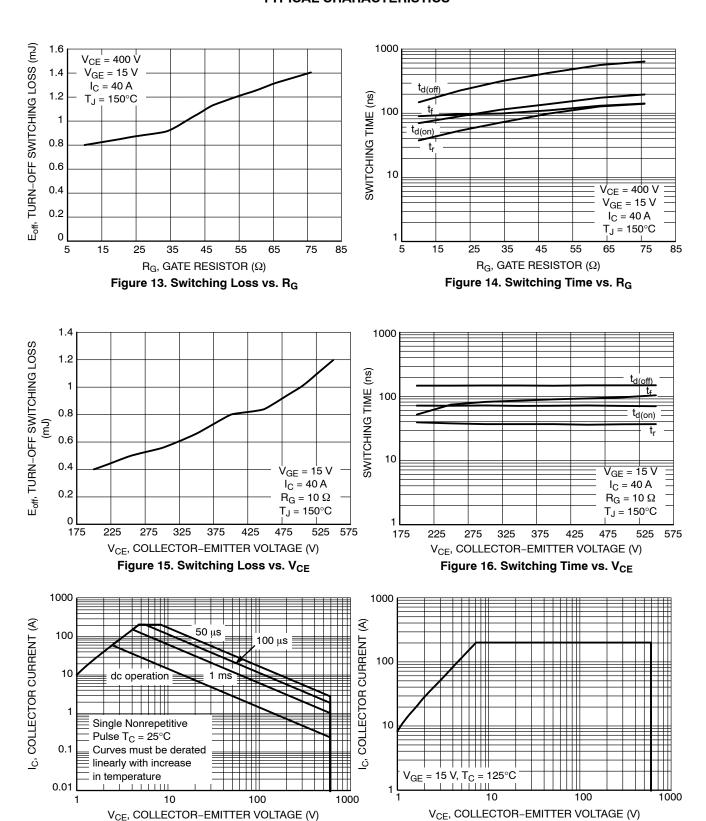


Figure 18. Reverse Bias Safe Operating Area

Figure 17. Safe Operating Area

TYPICAL CHARACTERISTICS

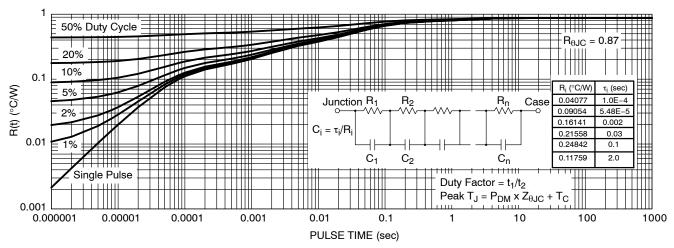


Figure 19. IGBT Transient Thermal Impedance

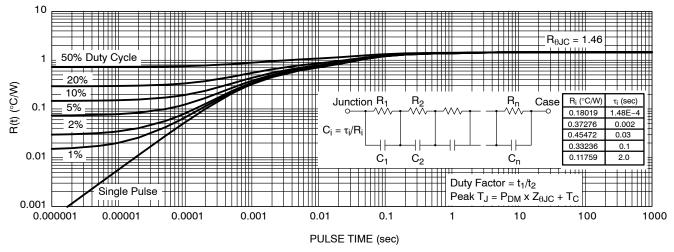


Figure 20. Diode Transient Thermal Impedance

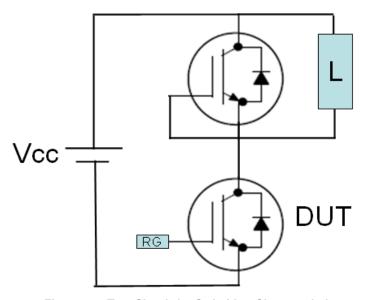


Figure 21. Test Circuit for Switching Characteristics

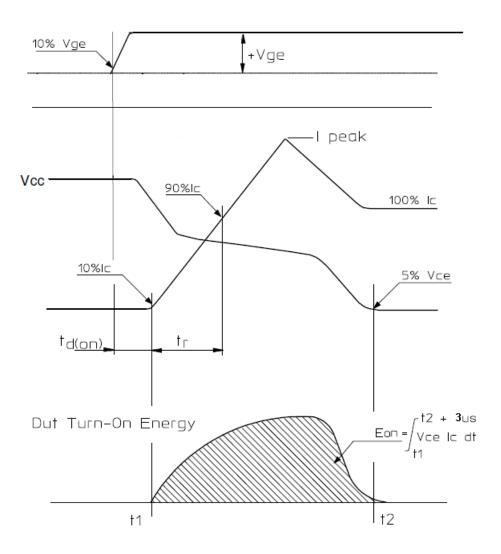


Figure 22. Definition of Turn On Waveform

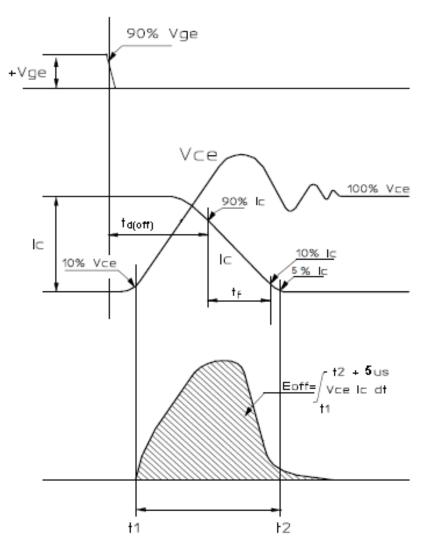
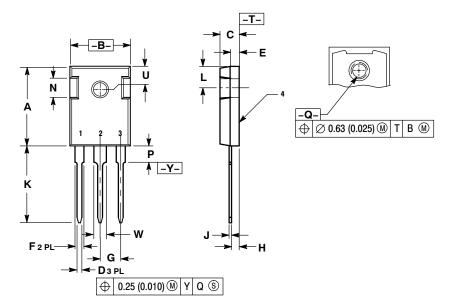



Figure 23. Definition of Turn Off Waveform

PACKAGE DIMENSIONS

TO-247 CASE 340L-02 ISSUE F

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	20.32	21.08	0.800	8.30	
В	15.75	16.26	0.620	0.640	
С	4.70	5.30	0.185	0.209	
D	1.00	1.40	0.040	0.055	
Е	1.90	2.60	0.075	0.102	
F	1.65	2.13	0.065	0.084	
G	5.45 BSC		0.215 BSC		
Н	1.50	2.49	0.059	0.098	
J	0.40	0.80	0.016	0.031	
K	19.81	20.83	0.780	0.820	
L	5.40	6.20	0.212	0.244	
N	4.32	5.49	0.170	0.216	
Р		4.50		0.177	
Q	3.55	3.65	0.140	0.144	
U	6.15	BSC	0.242 BSC		
w	2 87	3 12	0 113	0.123	

STYLE 4:

- PIN 1. GATE 2. COLLECTOR 3. EMITTER

 - 4. COLLECTOR

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, ON semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implications the polar or other applications intended to surgical implications which the failure of the SCILLC expects existing where surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative