Operational Amplifiers

NH0001 low power operational amplifier general description

The NH0001 is a general purpose operational amplifier designed for extremely low quiescent power. Typical NO-load dissipation at $25^{\circ} \mathrm{C}$ is 2 milliwatts at $V_{S}= \pm 15$ volts, and 0.5 milliwatts at $V_{S}= \pm 5$ volts. Even with this low power dissipation, the NH0001 will deliver ± 10 volts into a 2 K load with ± 15 volt supplies, and typical short circuit currents of 20 to 30 milliamps. Additional features are:

- Operation from $\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- Very low offset voltage: typically $200 \mu \mathrm{~V}$ at $25^{\circ} \mathrm{C}, 600 \mu \mathrm{~V}$ at $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Very low input offset current: typically 3 nA at $25^{\circ} \mathrm{C}, 6 \mathrm{nA}$ at $-55^{\circ} \mathrm{C}$
- Low noise: typically $3 \mu \mathrm{~V}$ rms
- Frequency compensation with 2 small capacitors
- Output may be clamped at any desired level
- Output is continuously short circuit proof

The NH0OO1 is ideally suited for space borne applications or where battery operated equipment requires extremely low power dissipation.

schematic and connection diagrams

COMPENSATION

TOP VIEW

Note: Pin 7 must be grounded or connected to a voltage at least 5 volts more negative than the positive supply (P in 9). P in 7 may be connected to the negative supply, however the standby current will be increased. A resistor may be inserted in series with Pin 7 up to a maximum of $100 \mathrm{k} \Omega 2$ per volt between $P_{\text {in }} 3$ and Pin^{9}

typical applications

Voltage Follower

Integrator with Bias Current Compensation

Voltage Comparator for Driving MOS Circuits

External Current Limiting Method

lout $\leq \frac{V_{f}^{*}}{\mathbf{R}_{\text {LIM }}}$
$\mathrm{V}_{\mathrm{f}}=$ average forward
voltage drop of at 20 to $50 \mu \mathrm{~A}$.

absolute maximum ratings

Supply Voltage
$\pm 20 \mathrm{~V}$
Power Dissipation (see Curve)
Differential Input Voltage
Input Voltage
Short Circuit Duration (Note 1)
Operating Temperature Range
Storage Temperature Range
Lead Temperature Soldering

400 mW

$\pm 7 \mathrm{~V}$
Equal to supply
Continuous
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$300^{\circ} \mathrm{C}$
(20 sec.; 1/16" from package)
electrical characteristics (Note 2)

PARAMETER	TEMP (${ }^{\circ} \mathrm{C}$)	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\begin{array}{r} 25 \\ -55 \text { to } 125 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{~K} \\ & \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{~K} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.2 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & m V \\ & m V \end{aligned}$
Input Offset Current	$\begin{aligned} & 25 \text { to } 125 \\ & -55 \end{aligned}$				$\begin{array}{r} 20 \\ 100 \end{array}$	$\begin{aligned} & n A \\ & n A \end{aligned}$
Input Bias Current	$\begin{aligned} & 25 \text { to } 125 \\ & -55 \end{aligned}$				$\begin{aligned} & 100 \\ & 300 \end{aligned}$	$\begin{aligned} & n A \\ & n A \end{aligned}$
Supply Current (+)	$\begin{array}{r} 25 \\ \\ -55 \quad 125 \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 90 \\ 70 \\ 100 \end{array}$	$\begin{aligned} & 125 \\ & 100 \\ & 150 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Supply Current (-)	$\begin{array}{r} 25 \\ \\ -55 \quad 125 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 20 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 60 \\ & 45 \\ & 75 \end{aligned}$	$\begin{array}{r} 90 \\ 75 \\ 125 \end{array}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Voltage Gain	$\begin{array}{r} -55 \text { to } 25 \\ 125 \end{array}$	$\begin{aligned} & R_{\mathrm{L}}=100 \mathrm{~K} \Omega, V_{\mathrm{S}}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=100 \mathrm{~K} \Omega, V_{\mathrm{S}}= \pm 15 \mathrm{~V}, V_{\text {OUT }}= \pm 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	$\begin{aligned} & 60 \\ & 30 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
Vout	$\begin{array}{rr} \hline & 25 \\ -55 & \\ & 125 \end{array}$	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, R_{L}=2 \mathrm{~K} \\ & V_{S}= \pm 15 \mathrm{~V}, R_{L}=2 \mathrm{~K} \\ & V_{S}= \pm 15 \mathrm{~V}, R_{L}=2 \mathrm{~K} \end{aligned}$	$\begin{array}{r} 10 \\ 9 \\ 11 \\ \hline \end{array}$	$\begin{aligned} & 11.5 \\ & 10.5 \\ & 12.5 \end{aligned}$		$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Common Mode Rejection Ratio	-55 to 125	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{~K}$	70	90		dB
Power Supply Rejection Ratio	-55 to 125	$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \Delta \mathrm{~V}=5 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=\leq 5 \mathrm{~K}$	70	90		dB
Input Resistance	25		0.5	1.5		$\mathrm{M} \Omega$
Average Temperature Coefficient of Offset Voltage	-55 to 125	$\mathrm{R}_{\mathrm{S}} \leq 5 \mathrm{~K}$		4		$\mu \vee /{ }^{\circ} \mathrm{C}$
Average Temperature Coefficient of Bias Current	-55 to 125			0.4		$\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$
Equivalent Input Noise Voltage	25	$\mathrm{R}_{\mathrm{S}}=1 \mathrm{~K}, \mathrm{f}=5 \mathrm{~Hz}$ to $1000 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$		3.0		$\mu \vee \mathrm{rms}$

Note 1: Based on maximum short circuit current of 50 mA , device may be operated at any combination of supply voltages, and temperature to be within rated power dissipation (see Curve).
Note 2: These specifications apply for Pin 7 grounded, for $\pm 5 \mathrm{~V} \leq V_{S} \leq \pm 20 \mathrm{~V}$, with Capacitor $\mathrm{C} 1=39$ pF from Pin 1 to $\operatorname{Pin} 10$, and $\mathrm{C} 2=22$ pF from Pin 5 to ground, unless otherwise specified

guaranteed performance

typical performance characteristics

Input Bias Current

Negative Output
Voltage Swing

Open Loop

Frequency Response

Input Offeset Current

Positive Output Voltage Swing

Large Signal

Frequency Response

Short Circuit Output Current

Input Resistance

Voltage Gain

Voltage Follower

 Pulse Response

