

Operational Amplifiers

NH0001 low power operational amplifier

general description

The NH0001 is a general purpose operational amplifier designed for extremely low quiescent power. Typical NO-load dissipation at 25°C is 2 milliwatts at $V_s = \pm 15$ volts, and 0.5 milliwatts at $V_s = \pm 5$ volts. Even with this low power dissipation, the NH0001 will deliver ± 10 volts into a 2K load with ± 15 volt supplies, and typical short circuit currents of 20 to 30 milliamps. Additional features are:

- Operation from ±5V to ±20V
- Very low offset voltage: typically 200 μV at 25°C, 600 μV at -55°C to 125°C

- Very low input offset current: typically 3 nA at 25°C, 6 nA at -55°C
 Low noise: typically 3 µV rms
- Frequency compensation with 2 small capacitors
- Output may be clamped at any desired level
- Output is continuously short circuit proof

The NH0001 is ideally suited for space borne applications or where battery operated equipment requires extremely low power dissipation.

0

NH0001

5

COMPENSATION

TOP VIEW

Note: Pin 7 must be grounded or connected to a voltage at least 5 volts more negative than the positive supply (Pin 9). Pin 7 may be con-

nected to the negative supply, however the standby current will be increased. A resistor may be inserted in series with Pin 7 up to a

OUTPUT

RIAS

BIAS

typical applications

Voltage Comparator for Driving MOS Circuits

maximum of 100 k\Omega per volt between Pin 3 and Pin 9.

COMPENSATION

INPUT

INPU1

External Current Limiting Method

absolute maximum ratings

Supply Voltage		±20V
Power Dissipation (see Curve)		400 mW
Differential Input Voltage		±7V
Input Voltage		Equal to supply
Short Circuit Duration (Note 1)		Continuous
Operating Temperature Range		-55°C to +125°C
Storage Temperature Range		-65°C to +150°C
Lead Temperature Soldering	4-	300°C
(20 sec.; 1/16" from package)		

electrical characteristics (Note 2)

PARAMETER	TEMP (°C)	CONDITIONS	MIN	ТҮР	ΜΑΧ	UNITS
Input Offset Voltage	25	R _s ≤5K		0.2	1.0	mV
	-55 to 125	R _S ≤5K		0.6	2.0	mV
Input Offset Current	25 to 125				20	nA
	-55				100	nA
Input Bias Current	25 to 125				100	nA
	-55				300	nA
Supply Current (+)	25	V _S = ±20V		90	125	μA
	125	$V_{S} = \pm 20V$		70	100	μA
	-55	$V_{\rm S} = \pm 20 V$		100	150	μΑ
Supply Current (-)	25	V _S = ±20V		60	90	μΑ
	125	$V_{\rm S} = \pm 20 V$		45	75	μΑ
	-55	$V_{\rm S} = \pm 20 V$		75	125	μA
Voltage Gain	–55 to 25	R_L = 100 K Ω , V_S = ±15V, V_{OUT} = ±10V	25	60		V/mV
	125	$R_{L} = 100 \text{ K}\Omega, V_{S} = \pm 15 \text{ V}, V_{OUT} = \pm 10 \text{ V}$	10	30		V/mV
Vout	25	V _S = ±15V, R _L = 2K	10	11.5		V
	-55	V _S = ±15V, R _L = 2K	9	10.5		V
	125	V _S = ±15V, R _L = 2K	11	12.5		V
Common Mode	-55 to 125	$V_{S} = \pm 15V, V_{IN} = \pm 10V, R_{S} \le 5K$	70	90		– dB
Rejection Ratio						
Power Supply	-55 to 125	$V_{S} = \pm 15V$, $\triangle V = 5V$ to 20V, $R_{S} = \le 5K$	70	90		dB
Rejection Ratio						
Input Resistance	25	-	0.5	1,5		MΩ
Average Temperature	-55 to 125	$R_{S} \leq 5K$		4		µV/°C
Coefficient of Offset						
Voltage						
Average Temperature	-55 to 125			0.4	3	μΑ/ ⁻ C
Coefficient of Blas						
Equivalent Input	25	$R_{\rm r} = 1K_{\rm r} f = 5 \text{Hz}$ to 1000 Hz V _r = +15V		3.0		uV rms
Noise Voltage	20	$m_{\rm S} = m_{\rm S} + 3 m_{\rm Z} = 1000 m_{\rm Z}, v_{\rm S} = 1000$				

Note 1: Based on maximum short circuit current of 50 mA, device may be operated at any combination of supply voltages, and temperature to be within rated power dissipation (see Curve).

Note 2: These specifications apply for Pin 7 grounded, for $\pm 5V \le V_S \le \pm 20V$, with Capacitor C1 = 39 pF from Pin 1 to Pin 10, and C2 = 22 pF from Pin 5 to ground, unless otherwise specified.

Maximum Power Dissipation

typical performance characteristics

Negative Supply Current

Positive Supply Currents

T_A = -55°C

T_A = +25~C

TA = +125°C

SUPPLY VOLTAGE (· V)

15

T_A = -55°C

20

15

20

10

TA = +125°C

TA = +25°C

10

Positive Output

Voltage Swing

Input Offset Current

8

6

4

2

0

18

18

14

12

10

0

OUTPUT VOLTAGE (+V)

5

INPUT OFFSET CURRENT (nA)

Short Circuit Output Current

Input Resistance

Voltage Gain

SUPPLY VOLTAGE (• V)

Voltage Follower Pulse Response

Input Bias Current

Negative Output Voltage Swing

Open Loop Frequency Response

