Operational Amplifiers

NH0005/NH0005A operational amplifier

general description

The NH0005/NH0005A is a hybrid integrated circuit operational amplifier employing thick film resistors and discrete silicon semiconductors in its design. The select matching of the input pairs of transistors results in low input bias currents and a very low input offset current, both of which exhibit excellent temperature tracking. In addition, the device features:

- Very high output current capability: $\pm 50 \mathrm{~mA}$ into a 100 ohm load
- Low standby power dissipation: typically 60 mW at $\pm 12 \mathrm{~V}$
- High input resistance: typically 2 M at $25^{\circ} \mathrm{C}$
schematic and connection diagrams

TOP VIEW

typical applications

Offset Balancing Circuit

*Typical value, $\mathrm{R}_{\mathrm{B}}=\mathbf{1 0 0 K}$.
R_{B} may be increased for greater
sensitivity with reduction in range.

Integrator with Bias Current Compensation

absolute maximum ratings

Supply Voltage	$\pm 20 \mathrm{~V}$
Power Dissipation (see Curve)	400 mW
Differential Input Voltage	$\pm 15 \mathrm{~V}$
Input Voltage	Equal to supply voltages
Peak Load Current	$\pm 100 \mathrm{~mA}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature (soldering, 20 sec)	$300^{\circ} \mathrm{C} ; 1 / 16^{\prime \prime}$ from package

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	NH0005			NH0005A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
$\begin{aligned} & \text { Input Offset Voltage } \\ & 25^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{R}_{\mathrm{s}} \leq 20 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{s}} \leq 20 \mathrm{k} \Omega \end{aligned}$		5	10 10		1	3 4	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\begin{aligned} & \text { Input Offset Current } \\ & 25^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \end{aligned}$			10 25	20 75		2	5 25	$\begin{aligned} & n A \\ & n A \end{aligned}$
$\begin{aligned} & \text { Input Bias Current } \\ & 25^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \end{aligned}$			15 100	50 250		80	25	$\begin{aligned} & n A \\ & n A \end{aligned}$
Large Signal Voltage Gain $-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ $125^{\circ} \mathrm{C}$	$R_{L}=10 \mathrm{~K}, \mathrm{R} 2=3 \mathrm{~K}, \mathrm{~V}_{\text {OUT }}= \pm 5 \mathrm{~V}$	2 1.5	4 3		4 3	$\begin{aligned} & 5.5 \\ & 5 \end{aligned}$		$\begin{aligned} & \mathrm{V} / \mathrm{mV} \\ & \mathrm{~V} / \mathrm{mV} \end{aligned}$
$\begin{aligned} & \text { Output Voltage Swing } \\ & -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \\ & -55^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega \end{aligned}$	-10 -5 -4		+6 +5 +4	-10 -5 -4		+6 +5 +4	V V V
Input Resistance $25^{\circ} \mathrm{C}$		1	2		1	2		$M \Omega$
Common Mode Rejection Ratio $25^{\circ} \mathrm{C}$	$V_{1 N}= \pm 4 \mathrm{~V}, \mathrm{RS} \leq 20 \mathrm{k} \Omega$	55	60		60	66		dB
Power Supply Rejection Ratio $25^{\circ} \mathrm{C}$		55	60		60	66		dB
Supply Current (+) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			3	5		3	5	mA
Supply Current (-) $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			2	4		2	4	mA
Average Temperature Coefficient of Input Offset Voltage $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathbf{S}} \leq 20 \mathrm{k} \Omega$		20			10		$u V /{ }^{\circ} \mathrm{C}$
Output Resistance $25^{\circ} \mathrm{C}$			70			\|70		Ω

Note 1: These specifications apply for pin 6 grounded, $V_{S}= \pm 12 \mathrm{~V}$, with Resistor $R_{1}=$ 200Ω in series with Capacitor $C_{1}=75$ pF from pin 4 to ground, and $C_{2}=200$ pF between pins 9 and 10 unless otherwise specified.
guaranteed performance characteristics

typical performance characteristics

Frequency Response

Maximum Power Dissipation

