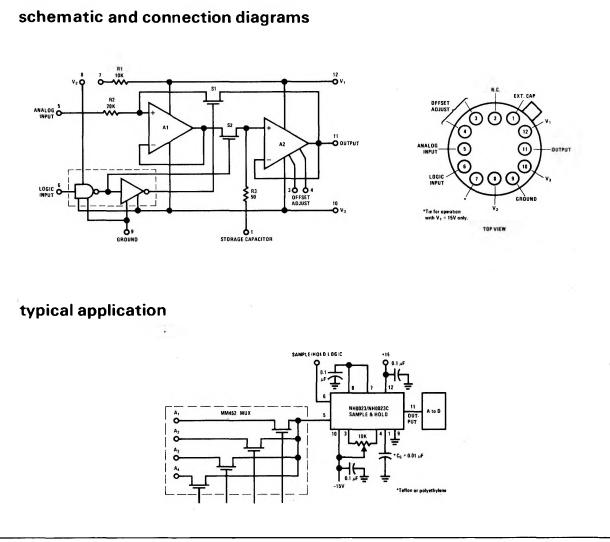


# **Operational Amplifiers**

# NH0023/NH0023C sample and hold amplifier


## general description

The NH0023/NH0023C is a complete sample and hold circuit including input buffer amplifier, output buffer amplifier, analog signal sampling gate, and logic circuitry. The device is designed to operate from  $\pm 15V$  dc supplies, but provision is made for connection of a separate 5V logic supply in minimum noise applications. Other important design features include:

- 0.5 mV/sec drift at 25°C, C<sub>S</sub> = 0.01  $\mu$ F and V<sub>OUT</sub> = ±5V
- Sample acquisition time of 100 µs for a full 20V change

- ±10V input voltage range
- Logic inputs are TTL/DTL compatible
- Input offset is adjustable with a single 10k trimpot
- Output is short circuit proof

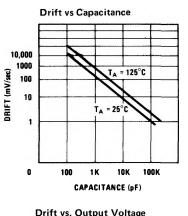
The NH0023/NH0023C is ideally suited for a wide variety of sample and hold applications including analog to digital conversion and synchronous demodulation. The NH0023 is specified over the temperature range of  $-55^{\circ}$ C to  $+125^{\circ}$ C; whereas the NH0023C is specified from 0°C to 85°C.

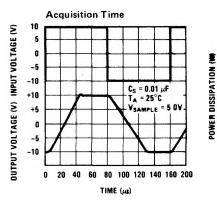


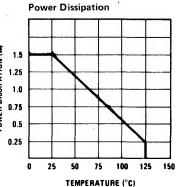
## absolute maximum ratings

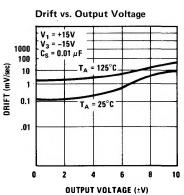
| $V_1 - V_3$ (Differential Voltage) | 40V                                 |
|------------------------------------|-------------------------------------|
| V <sub>2</sub> Maximum             | 7V                                  |
| Logic Input Voltage Maximum        | 5.5V                                |
| Analog Input Voltage               | ±15V                                |
| Power Dissipation                  | 1.5W                                |
| Storage Temperature Range          | $-65^{\circ}$ C to $+150^{\circ}$ C |
| Operating Temperature Range NH0023 | –55°C to +125°C                     |
| NH0023C                            | 0°C to +85°C                        |

# electrical characteristics (Notes 1 & 2)


| PARAMETER                                         | CONDITIONS                                                                                  | NH0023 |     |      | NH0023C |     |      |        |
|---------------------------------------------------|---------------------------------------------------------------------------------------------|--------|-----|------|---------|-----|------|--------|
|                                                   |                                                                                             | MIN    | TYP | MAX  | MIN     | ТҮР | MAX  | UNITS  |
| Sample (Logic ''1'')<br>Input Voltage             | V <sub>2</sub> = 4.5V                                                                       | 2.0    |     |      | 2.0     |     |      | v      |
| Sample (Logic ''1'')<br>Input Current             | V <sub>2</sub> = 5.5V, V <sub>IN</sub> = 2.4V                                               |        |     | 5.0  |         |     | 5.0  | μA     |
| Hold (Logic ''0'')<br>Input Voltage               | V <sub>2</sub> = 4.5V                                                                       |        |     | 0.8  |         |     | 0.8  | v      |
| Hold (Logic ''0'')<br>Input Current               | V <sub>2</sub> = 5.5V, V <sub>IN</sub> = 0.4V                                               |        |     | 0.5  |         |     | 0.5  | mA     |
| Analog Input<br>Voltage Range                     |                                                                                             | ±10    | ±11 |      | ±10     | ±11 |      | V      |
| Supply Current<br>V <sub>1</sub> & V <sub>3</sub> | V <sub>1</sub> = +15V, V <sub>3</sub> = -15V<br>V <sub>IN</sub> = 0V, V <sub>OUT</sub> = 0V |        | 4.5 | 6.0  |         | 4.5 | 6.0  | mA     |
| Supply Current<br>V <sub>2</sub>                  | V <sub>2</sub> = 5.0V, V <sub>IN</sub> = 0V                                                 |        | 1.0 | 1.6  |         | 1.0 | 1.6  | mA     |
| Sample Accuracy                                   | V <sub>OUT</sub> = ±10V (Full Scale)                                                        |        |     | 0.01 | ÷       |     | 0.01 | %      |
| Input Impedance<br>Sample                         | $V_{1N} \ge 2.0$                                                                            | 500    |     |      | 300     |     |      | kΩ     |
| Input Impedance<br>Hold                           | $V_{IN} \leq 0.8V$                                                                          | 20     |     |      | 20      |     |      | kΩ     |
| Drift Rate                                        | V <sub>OUT</sub> ≤ ±5V, C <sub>S</sub> = 0.01 μF<br>T <sub>A</sub> = 25°C                   |        |     | 0.5  |         | 0.5 |      | mV/sec |
| Drift Rate                                        | V <sub>OUT</sub> = ±10V, C <sub>S</sub> = 0.01 μF<br>T <sub>A</sub> = 25°C                  |        | 10  | 20   |         | 20  | 50   | mV/sec |
| Drift Rate                                        | $V_{OUT} = \pm 10V, C_{S} = 0.01 \mu F$<br>-55°C $\leq T_{A} \leq \pm 125°C$                |        |     | 100  |         |     |      | mV/sec |
| Drift Rate                                        | $V_{OUT} = \pm 10V, C_S = 0.01 \ \mu F$<br>$0^{\circ}C \le T_A \le 85^{\circ}C$             |        |     |      |         |     | 200  | mV/sec |
| Sample Acquisition<br>Time                        | ΔV <sub>OUT</sub> = 20V                                                                     |        | 50  | 100  | x.      | 50  | 100  | μs     |
| Output Offset<br>Voltage                          | $R_{S} \leq 10k$                                                                            |        |     | ±20  |         |     | ±20  | mV     |
| Analog Voltage<br>Output Range                    | $R_L \geq 2k$                                                                               | ±10    | ±11 |      | ±10     | ±11 |      | v      |


**Note 1:** Unless otherwise noted, these specifications apply for  $V_1 = +15V$ ,  $V_2 = 5.0V$ ,  $V_3 = -15V$ , pin 9 grounded, a 0.01  $\mu$ F capacitor connected between pin 1 and ground over the temperature range  $-55^{\circ}$ C to  $+125^{\circ}$ C for the NH0023, and 0°C to 85°C for the NH0023C.


Note 2: All typical values are for  $T_A = 25^{\circ}C$ .


# NH0023/NH0023C

#### typical performance









#### applications information

#### 1. Drift Error Minimization

In order to minimize drift error, care in selection of  $C_S$  and layout of the printed circuit board is required. The capacitor should be of high quality teflon, polycarbonate, or polyethylene construction. Board cleanliness and layout are critical particularly at elevated temperatures. See AN-29 for detailed recommendations.

#### 2. Capacitor Selection

The size of the capacitor is dictated by the desired drift rate and acquisition time. The drift is determined by  $\frac{dv}{dt} = \frac{1}{C_S}$ , where I is the sum of the leakage currents. At room temperature leakage current for the NH0023 is approximately 100 pA. A drift rate of 10 mV/sec would require a 0.01  $\mu$ F capacitor.

For values of  $C_S$  up to 0.01  $\mu$ F the acquisition time is limited by the slew rate of the input buffer amplifier, A1, typically 0.5 V/ $\mu$ s. Beyond this point, current availability to charge  $C_S$  also enters the picture. The acquisition time is given by:

$$t_{A} \cong \sqrt{\frac{2\Delta e_{o} RC_{S}}{0.5 \times 10^{6}}} = 2 \times 10^{-3} \sqrt{\Delta e_{o} RC_{S}}$$

where: R = the internal resistance in series with C<sub>S</sub>  $\Delta e_o$  = change in voltage sampled

An average value for R is approximately 600 ohms. The expression for  $t_A$  reduces to:

$$t_A \cong \frac{\sqrt{\Delta e_o C_S}}{20}$$

For a -10V to +10V change and  $C_S = .05 \,\mu$ F, acquisition time is typically 50  $\mu$ s.

#### 3. Offset Null

Provision is made to null the NH0023/NH0023C by use of a 10k pot between pins 3 and 4. Offset null should be accomplished in the sample mode at one half the input voltage range for minimum average error.

#### 4. Elimination of the 5V Logic Supply

The 5V logic supply may be eliminated by shorting pin 7 to pin 8 which connects a 10k dropping resistor between the +15V and V<sub>2</sub>. Decoupling pin 8 to ground through  $0.1 \,\mu\text{F}$  disc capacitor is recommended in order to minimize transients in the output.