Single 2-Input NAND Gate

The NL17SZ00 is a single 2-input NAND Gate in two tiny footprint packages. The device performs much as LCX multi-gate products in speed and drive.

Features

- Tiny SOT-353 and SOT-553 Packages
- 2.7 ns T_{PD} at 5 V (typ)
- Source/Sink 24 mA at 3.0 V
- Over-Voltage Tolerant Inputs
- Pin For Pin with NC7SZ00P5X, TC7SZ00FU and TC7SZ00AFE
- Chip Complexity: FETs = 20
- Designed for 1.65 V to 5.5 V V_{CC} Operation
- These Devices are Pb-Free and are RoHS Compliant

Figure 1. Pinout (Top View)

Figure 2. Logic Symbol

ON Semiconductor®

http://onsemi.com

Date Code"
– Ph_Free Package

= Pb-Free Package

(Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location.

L1 = Specific Device Marking M = Date Code

PIN ASSIGNMENT

Pin	Function
1	А
2	В
3	GND
4	Y
5	V _{CC}

FUNCTION TABLE

Ing	Output Y = AB	
А	В	Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to + 7.0	V
V _{IN}	DC Input Voltage	-0.5 to + 7.0	V
V _{OUT}	DC Output Voltage	–0.5 to to V _{CC} + 0.5	V
Ι _{ΙΚ}	DC Input Diode Current	-50	mA
Ι _{ΟΚ}	DC Output Diode Current	-50	mA
I _{OUT}	DC Output Sink Current	±50	mA
I _{CC}	DC Supply Current per Supply Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to + 50	°C
ΤL	Lead Temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	+150	°C
θ_{JA}	Thermal Resistance SOT-353 (Note 1) SOT-553		°C/W
PD	Power Dissipation in Still Air at 85°C SOT-353 SOT-553		mW
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	
ESD	ESD Classification Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4)	Class A	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2-ounce copper trace with no air flow.

2. Tested to EIA/JESD22-A114-A, rated to EIA/JESD22-A114-B.

3. Tested to EIA/JESD22-A115-A, rated to EIA/JESD22-A115-A.

4. Tested to JESD22-C101-A.

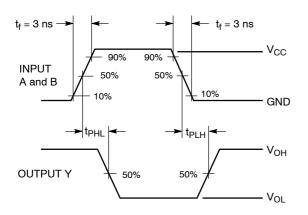
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage		1.65	5.5	V
V _{IN}	DC Input Voltage	0	5.5	V	
V _{OUT}	DC Output Voltage	0	5.5	V	
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Rise and Fall Time $ \begin{array}{c} V_{CC} = 3.0 \ V \pm 0.3 \ V \\ V_{CC} = 5.0 \ V \pm 0.5 \ V \end{array} $		0 0	100 20	ns/V

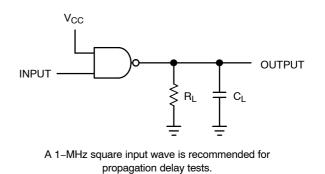
DC ELECTRICAL C	HARACTERISTICS
-----------------	----------------

			V _{cc}	Т	A = 25°	С	-55°C ≤ T	A ≤ 125°C	
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Max	Unit
V _{IH}	High-Level Input Voltage		1.65 to 1.95 2.3 to 5.5	0.75 V _{CC} 0.7 V _{CC}			0.75 V _{CC} 0.7 V _{CC}		V
V _{IL}	Low-Level Input Voltage		1.65 to 1.95 2.3 to 5.5			0.25 V _{CC} 0.3 V _{CC}		0.25 V _{CC} 0.3 V _{CC}	V
V _{OH}	High–Level Output Voltage V _{IN} = V _{IL} or V _{IH}	$\begin{split} I_{OH} &= 100 \; \mu A \\ I_{OH} &= -3 \; m A \\ I_{OH} &= -8 \; m A \\ I_{OH} &= -12 \; m A \\ I_{OH} &= -16 \; m A \\ I_{OH} &= -24 \; m A \\ I_{OH} &= -32 \; m A \end{split}$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5	V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8	V _{CC} 1.4 2.1 2.4 2.7 2.5 4.0		V _{CC} - 0.1 1.29 1.9 2.2 2.4 2.3 3.8		V
V _{OL}	Low-Level Output Voltage V _{IN} = V _{IH} or V _{OH}	$I_{OL} = 100 \ \mu A$ $I_{OL} = 3 \ m A$ $I_{OL} = 8 \ m A$ $I_{OL} = 12 \ m A$ $I_{OL} = 16 \ m A$ $I_{OL} = 24 \ m A$ $I_{OL} = 32 \ m A$	1.65 to 5.5 1.65 2.3 2.7 3.0 3.0 4.5		0.08 0.20 0.22 0.28 0.38 0.42	0.1 0.24 0.3 0.4 0.4 0.55 0.55		0.1 0.24 0.3 0.4 0.4 0.55 0.55	V
I _{IN}	Input Leakage Current	$V_{IN} = 5.5 V \text{ or GND}$	0 to 5.5			±0.1		±1.0	μA
I _{OFF}	Power Off Leakage Current	$V_{IN} = 5.5 V \text{ or}$ $V_{OUT} = 5.5 V$	0			1		10	μΑ
I _{CC}	Quiescent Supply Current	V_{IN} = 5.5 V or GND	5.5			1		10	μΑ

AC ELECTRICAL CHARACTERISTICS t_R = t_F = 3.0 ns


			V _{cc}	-	T _A = 25°C		$\text{-55°C}\leq\text{T}_{\text{A}}\leq\text{125°C}$		
Symbol	Parameter	Condition	(V)	Min	Тур	Max	Min	Мах	Unit
t _{PLH}	Propagation Delay	R_L = 1 M Ω , C_L = 15 pF	1.65	2.0	5.4	11.4	2.0	12	ns
t _{PHL}	(Figure 3 and 4)	R_L = 1 M Ω , C_L = 15 pF	1.8	2.0	4.5	9.5	2.0	10.0	
		R_L = 1 M Ω , C_L = 15 pF	2.5 to 0.2	0.8	3.0	6.5	0.8	7.0	
		R_L = 1 M Ω , C_L = 15 pF	$\textbf{3.3}\pm\textbf{0.3}$	0.5	2.4	4.5	0.5	4.7	
		R_{L} = 500 Ω , C_{L} = 50 pF		1.5	2.4	5.0	1.5	5.2	
		R_L = 1 M Ω , C_L = 15 pF	5.0 ± 0.5	0.5	2.0	3.9	0.5	4.1	
		R_{L} = 500 Ω , C_{L} = 50 pF		0.8	2.4	4.3	0.8	4.5	

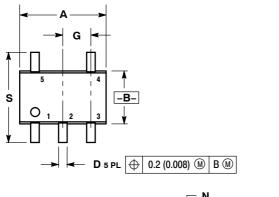
CAPACITIVE CHARACTERISTICS

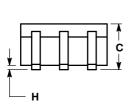

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	V_{CC} = 5.5 V, V_{I} = 0 V or V_{CC}	>4	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V_{CC} = 3.3 V, V_{I} = 0 V or V_{CC}	25	pF
	(Note 5)	10 MHz, V_{CC} = 5.5 V, V_{I} = 0 V or V_{CC}	30	

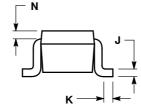
5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.

NL17SZ00

DEVICE ORDERING INFORMATION

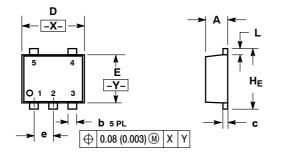

Device Order Number	Package Type	SHipping [†]
NL17SZ00DFT2G	SOT-353 (Pb-Free)	3000 / Tape & Reel
NL17SZ00XV5T2G	SOT-553 (Pb-Free)	4000 / Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


NL17SZ00

PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353) DF SUFFIX CASE 419A-02 ISSUE K

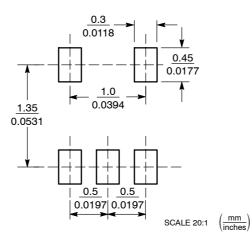

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
C	0.031 0.043 0.004 0.012		0.80	1.10
D			0.10	0.30
G	0.026	BSC	0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004 0.012		0.10	0.30
Ν	0.008	REF	0.20	REF
S	0.079	0.087	2.00	2.20

NL17SZ00

PACKAGE DIMENSIONS

SOT-553 **XV5 SUFFIX** CASE 463B **ISSUE B**


 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: MULTIMETERS NOTES

CONTROLLING DIMENSION: MILLIMETERS MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM З.

THICKNESS OF BASE MATERIAL

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.063	0.067
Е	1.10	1.20	1.30	0.043	0.047	0.051
е	0.50 BSC				0.020 BSC)
Г	0.10	0.20	0.30	0.004	0.008	0.012
ΗE	1.50	1.60	1.70	0.059	0.063	0.067

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent or any liability nor the rights of others. SCILIC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are specified to the SCILIC of the S intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative