## NL7SZ18

## 1-to-2 Demultiplexer with 3-State Deselected Output

The NL7SZ18 is a high-performance non-inverting 1-to-2 demultiplexer. With the Select input [S] at Low, data at A is passed to Y 0 and Y 1 is set to high impedance. With the Select input [S] at High, data at A is passed to Y 1 and Y 0 is set to high impedance. The device operates over the voltage range from 1.65 V to 5.5 V .

This device has been optimized for on-board buffering applications and offers mixed ( $1.65 \mathrm{~V}, 2.3 \mathrm{~V}, 3.0 \mathrm{~V}$ and 5.5 V ) voltage capability by providing over voltage tolerance (OVT*) circuitry on I/O pins.

## Features

- High-Speed Propagation Delay
$\mathrm{t}_{\mathrm{PD}} 2.5 \mathrm{nS}$ (Typ), Load $50 \mathrm{pF} @ 5.0 \mathrm{~V}$
- Power Down Impedance Outputs in High-Z
- Output Drive Capability 32 mA@5.0V
- Broad $\mathrm{V}_{\mathrm{CC}}$ Operating Range 1.65 V to 5.5 V
- Surface Mount Technology

SC-70, 6-Lead and UDFN6 Packaging

- OVT* on Inputs/Outputs
- $\mathrm{Pb}-$ Free Package is Available


## Typical Applications

- Cell Phones
- PDAs
- Digital Cameras
- Video Cameras


## Important Information

- ESD Protection: MM >200 V, Human Body Model >2000 V
- Latch-Up Max Rating: 300 mA
- Pin-to-Pin Compatible with NC7SZ18
*Over Voltage Tolerance (OVT) enables input and output pins to function outside (higher) of their operating voltages, with no damage to the devices or to signal integrity.

PIN/FUNCTION TABLE

| Pin | Function |
| :---: | :---: |
| A | Data Input |
| S | Demultiplexer Select |
| $\mathrm{Y}_{0}$ | Output 1 |
| $\mathrm{Y}_{1}$ | Output 2 |

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com
MARKING DIAGRAMS

(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary depending upon manufacturing location.

PIN ASSIGNMENT


## TRUTH TABLE

| Input |  | Output |  |
| :---: | :---: | :---: | :---: |
| S | A | $\mathrm{Y}_{\mathbf{0}}$ | $\mathrm{Y}_{\mathbf{1}}$ |
| L | L | L | Z |
| L | H | H | Z |
| H | L | Z | L |
| H | H | Z | H |

## ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MAXIMUM RATINGS

| Rating | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: |
| DC Supply Voltage | $\mathrm{V}_{\mathrm{CC}}$ | -0.5 to +7.0 | V |
| DC Input Voltage | $\mathrm{V}_{\text {IN }}$ | -0.5 to +7.0 | V |
| DC Output Voltage | $\mathrm{V}_{\text {OUT }}$ | -0.5 to +7.0 | V |
| DC Input Diode Current @ $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ | $\mathrm{I}_{\text {IK }}$ | -50 | mA |
| DC Output Diode Current @ $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ | lok | -50 | mA |
| DC Output Sink Current | Iout | $\pm 50$ | mA |
| DC Supply Current per Supply Pin | $\mathrm{I}_{\mathrm{CC}}$ | $\pm 100$ | mA |
| DC Ground Current per Ground Pin | $\mathrm{I}_{\text {GND }}$ | $\pm 100$ | mA |
| Storage Temperature Range | $\mathrm{T}_{\text {STG }}$ | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| Lead Temperature, 1 mm from Case for 10 Seconds | $\mathrm{T}_{\mathrm{L}}$ | 260 | ${ }^{\circ} \mathrm{C}$ |
| Junction Temperature Under Bias | $\mathrm{T}_{\mathrm{J}}$ | +150 | ${ }^{\circ} \mathrm{C}$ |
| Thermal Resistance (Note 1) | $\theta_{\text {JA }}$ | 250 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| Power Dissipation in Still Air at $85^{\circ} \mathrm{C}$ | $\mathrm{P}_{\mathrm{D}}$ | 180 | mW |
| Moisture Sensitivity | MSL | Level 1 | - |
| Flammability Rating Oxygen Index: 28 to 34 | $\mathrm{F}_{\mathrm{R}}$ | UL 94 V-0 @ 0125 in | - |
|  | $\mathrm{V}_{\text {ESD }}$ | $\begin{gathered} \hline>2000 \\ >200 \\ \text { n/a } \\ \hline \end{gathered}$ | V |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2 ounce copper trace no air flow.
2. Tested to EIA/JESD22-A114-A.
3. Tested to EIA/JESD22-A115-A.
4. Tested to JESD22-C101-A.

RECOMMENDED OPERATING CONDITIONS

| Rating |  | Symbol | Value | Unit |
| :---: | :---: | :---: | :---: | :---: |
| DC Supply Voltage |  | $\mathrm{V}_{\mathrm{CC}}$ | 1.65 to 5.5 | V |
| DC Supply Voltage, Data Retention |  | $\mathrm{V}_{\mathrm{CC}}$ | 1.5 to 5.5 | V |
| Input Voltage |  | $\mathrm{V}_{\text {IN }}$ | 0 to 5.5 | V |
| Output Voltage |  | $\mathrm{V}_{\text {OUT }}$ | 0 to 5.5 | V |
| Operating Temperature |  | $\mathrm{T}_{\mathrm{A}}$ | -55 to 125 | ${ }^{\circ} \mathrm{C}$ |
| Input Rise and Fall Times | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} @ 1.8 \pm 0.15 \mathrm{~V} \\ \mathrm{~V}_{C C} @ 2.5 \pm 0.2 \mathrm{~V} \\ \mathrm{~V}_{C C} @ 3.3 \pm 0.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}} @ 5.0 \pm 0.5 \mathrm{~V} \end{gathered}$ | $\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$ | 0 to 20 0 to 20 0 to 10 0 to 5 | nS/V |
| Thermal Resistance |  | $\theta_{\text {JA }}$ | 350 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

ORDERING INFORMATION

| Device Order Number | Package | Shipping $^{\dagger}$ |
| :--- | :---: | :---: |
| NL7SZ18DFT2 | SC70-6 | $3000 /$ Tape \& Reel |
| NL7SZ18DFT2G | SC70-6 <br> (Pb-Free) | $3000 /$ Tape \& Reel |
| NL7SZ18MUR2G | UDFN6 <br> (Pb-Free) | $3000 /$ Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DC ELECTRICAL CHARACTERISTICS

| Parameter | Condition |  | Symbol | $V_{c c}$ <br> (V) | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min |  | Typ | Max | Min | Max |  |
| High-Level Input Voltage |  |  |  | $\mathrm{V}_{\mathrm{IH}}$ | $\begin{gathered} \hline 1.65-1.95 \\ 2.3-5.5 \end{gathered}$ | $\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.70 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$ |  |  | $\begin{aligned} & 0.75 \mathrm{~V}_{\mathrm{CC}} \\ & 0.70 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$ |  | V |
| Low-Level Output Voltage |  |  | $\mathrm{V}_{\text {IL }}$ | $\begin{gathered} 1.65-1.95 \\ 2.3-5.5 \end{gathered}$ |  |  | $\begin{aligned} & 0.25 \mathrm{~V}_{\mathrm{CC}} \\ & 0.30 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$ |  | $\begin{aligned} & 0.25 \mathrm{~V}_{\mathrm{CC}} \\ & 0.30 \mathrm{~V}_{\mathrm{CC}} \end{aligned}$ | V |
| High-Level Output Voltage | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ | $\mathrm{IOH}^{\text {a }}=-100 \mu \mathrm{a}$ | $\mathrm{V}_{\mathrm{OH}}$ | $\begin{gathered} 1.65 \\ 2.3 \\ 3.0 \\ 4.5 \end{gathered}$ | $\begin{aligned} & 1.55 \\ & 2.20 \\ & 2.90 \\ & 4.40 \end{aligned}$ | $\begin{aligned} & 1.65 \\ & 2.30 \\ & 3.00 \\ & 4.50 \end{aligned}$ |  | $\begin{aligned} & 1.55 \\ & 2.20 \\ & 2.90 \\ & 4.40 \end{aligned}$ |  | V |
|  |  | $\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-8.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} \end{aligned}$ |  | $\begin{gathered} 1.65 \\ 2.3 \\ 3.0 \\ 3.0 \\ 4.5 \end{gathered}$ | $\begin{aligned} & 1.29 \\ & 1.90 \\ & 2.40 \\ & 2.30 \\ & 3.80 \end{aligned}$ | $\begin{aligned} & 1.52 \\ & 2.15 \\ & 2.80 \\ & 2.68 \\ & 4.20 \end{aligned}$ |  | $\begin{aligned} & 1.29 \\ & 1.90 \\ & 2.40 \\ & 2.30 \\ & 3.80 \end{aligned}$ |  |  |
| Low-Level Output Voltage | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ | $\mathrm{l}_{\text {OL }}=100 \mu \mathrm{a}$ | $\mathrm{V}_{\text {OL }}$ | $\begin{gathered} \hline 1.65 \\ 2.3 \\ 3.0 \\ 4.5 \end{gathered}$ |  | $\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & 0.10 \\ & 0.10 \\ & 0.10 \\ & 0.10 \end{aligned}$ |  | $\begin{aligned} & 0.10 \\ & 0.10 \\ & 0.10 \\ & 0.10 \end{aligned}$ | V |
|  |  | $\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA} \end{aligned}$ |  | $\begin{gathered} \hline 1.65 \\ 2.3 \\ 3.0 \\ 3.0 \\ 4.5 \end{gathered}$ |  | $\begin{aligned} & 0.08 \\ & 0.10 \\ & 0.15 \\ & 0.22 \\ & 0.22 \end{aligned}$ | $\begin{aligned} & 0.24 \\ & 0.30 \\ & 0.40 \\ & 0.55 \\ & 0.55 \end{aligned}$ |  | $\begin{aligned} & 0.24 \\ & 0.30 \\ & 0.40 \\ & 0.55 \\ & 0.55 \end{aligned}$ |  |
| Input Leakage Current | $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$, GND |  | $\mathrm{I}_{\mathrm{N}}$ | 0.0 to 5.5 |  |  | $\pm 0.1$ |  | $\pm 1.0$ | $\mu \mathrm{A}$ |
| Output High-Z Current | $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & 0<\mathrm{V}_{\text {out }} \leq 5.5 \mathrm{~V} \end{aligned}$ |  | Ioz | 1.65 to 5.5 |  |  | $\pm 0.5$ |  | $\pm 5.0$ | $\mu \mathrm{A}$ |
| Power-Off Leakage Current | $\mathrm{V}_{\mathrm{IN}}$ or $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ |  | Ioff | 0.0 |  |  | 1.0 |  | 10 | $\mu \mathrm{A}$ |
| Quiescent Supply Current | $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{GND}$ |  | ${ }^{\text {ICC }}$ | 1.8 to 5.5 |  |  | 1.0 |  | 10 | $\mu \mathrm{A}$ |

AC ELECTRICAL CHARACTERISTICS

| Parameter | Condition | Figure | Symbol | $\mathrm{V}_{\mathrm{Cc}}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Min | Typ | Max | Min | Max |  |
| Propagation Delay $A$ to $Y_{0}$ or $Y_{1}$ | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}=1.0 \mathrm{M} \Omega \\ & \mathrm{~S}=\mathrm{OPEN} \end{aligned}$ | Figures 1 \& 3 | $\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | $\begin{gathered} 1.8 \pm 0.15 \\ 2.5 \pm 0.2 \\ 3.3 \pm 0.3 \\ 5.0 \pm 0.5 \end{gathered}$ | $\begin{aligned} & 2.0 \\ & 1.0 \\ & 0.8 \\ & 0.5 \end{aligned}$ | $\begin{aligned} & 6.3 \\ & 3.6 \\ & 2.7 \\ & 2.0 \end{aligned}$ | $\begin{gathered} 10.1 \\ 5.7 \\ 4.0 \\ 3.1 \end{gathered}$ | $\begin{aligned} & 2.0 \\ & 1.0 \\ & 0.8 \\ & 0.5 \end{aligned}$ | $\begin{gathered} 10.5 \\ 6.0 \\ 4.3 \\ 3.3 \end{gathered}$ | nS |
|  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}=500 \Omega \\ & \mathrm{~S}=\mathrm{OPEN} \end{aligned}$ | Figures 1 \& 3 |  | $\begin{aligned} & 3.3 \pm 0.3 \\ & 5.0 \pm 0.5 \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & 3.4 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 4.9 \\ & 3.9 \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & \hline 5.4 \\ & 4.2 \end{aligned}$ | nS |
| Output Enable Time | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{U}}=500 \Omega \\ & \mathrm{~S}=\mathrm{GND} \text { for } \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{~S}=\mathrm{V}_{\mathrm{IN}} \text { for } \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{~V}_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \end{aligned}$ | Figures 1 \& 3 | $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PzH}} \end{aligned}$ | $\begin{gathered} 1.8 \pm 0.15 \\ 2.5 \pm 0.2 \\ 3.3 \pm 0.3 \\ 5.0 \pm 0.5 \end{gathered}$ | $\begin{aligned} & 3.0 \\ & 1.8 \\ & 1.2 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & \hline 6.9 \\ & 4.2 \\ & 3.2 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 12 \\ & 6.8 \\ & 5.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 1.8 \\ & 1.2 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & \hline 12.5 \\ & 7.3 \\ & 5.5 \\ & 4.3 \end{aligned}$ | nS |
|  | $\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{D}}, \mathrm{R}_{\mathrm{D}}=500 \Omega \\ & \mathrm{~S}=\mathrm{GND} \text { for } \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{~S}=\mathrm{V}_{\mathrm{IN}} \text { for } \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{~V}_{\mathrm{I}}=2 \times \mathrm{V}_{\mathrm{CC}} \end{aligned}$ | $\begin{aligned} & \text { Figures } \\ & 1 \& 3 \end{aligned}$ | $\begin{aligned} & \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$ | $\begin{aligned} & 1.8 \pm 0.15 \\ & 2.5 \pm 0.2 \\ & 3.3 \pm 0.3 \\ & 5.0 \pm 0.5 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 1.5 \\ & 0.8 \\ & 0.3 \end{aligned}$ | $\begin{aligned} & 6.0 \\ & 4.0 \\ & 2.9 \\ & 1.8 \end{aligned}$ | $\begin{aligned} & 10 \\ & 6.8 \\ & 4.9 \\ & 3.5 \end{aligned}$ | $\begin{aligned} & 2.5 \\ & 1.5 \\ & 0.8 \\ & 0.3 \end{aligned}$ | $\begin{gathered} \hline 10.5 \\ 7.1 \\ 5.3 \\ 3.7 \end{gathered}$ | nS |
| Input Capacitance Output Capacitance |  |  | $\mathrm{C}_{\mathrm{IN}}$ Cout | $\begin{gathered} \hline \text { OPEN } \\ 3.3 \end{gathered}$ |  | $\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$ |  |  |  | pF |
| Power Dissipation Capacitance | Note 5 | Figure 2 | $\mathrm{C}_{\text {PD }}$ | $\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$ |  | $\begin{gathered} \hline 16 \\ 19.5 \end{gathered}$ |  |  |  | pF |

5. $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (ICCD) at no output loading and operating at $50 \%$ duty cycle (see Figure 2). $\mathrm{C}_{\mathrm{PD}}$ is related to $\mathrm{I}_{\mathrm{CCD}}$ dynamic operating current by the expression: $\mathrm{I}_{\mathrm{CCD}}=\left(\mathrm{C}_{P D}\right)\left(\mathrm{V}_{\mathrm{CC}}\right)\left(\mathrm{f}_{\mathrm{IN}}\right)+\left(\mathrm{I}_{\mathrm{CCD}}\right.$ static $)$.


Figure 1. AC Test Circuit
$\mathrm{C}_{\mathrm{L}}$ Includes Load and Stray Capacitance Input PRR $=1.0 \mathrm{MHz} ; \mathrm{t}_{\mathrm{w}}=500 \mathrm{nS}$


Figure 2. Icco Test Circuit
Input = AC Waveform; $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=1.8 \mathrm{nS}$ PRR = 10 MHz ; Duty Cycle $=50 \%$ S Input = GND or x

NL7SZ18


Figure 3. AC Waveforms

## PACKAGE DIMENSIONS

## SC-88/SC70-6/SOT-363 <br> CASE 419B-02 <br> ISSUE W



NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH
2. 419B-01 OBSOLETE, NEW STANDARD 419B-02

|  | MILLIMETERS |  |  | INCHES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | NOM | MAX | MIN | NOM | MAX |
| A | 0.80 | 0.95 | 1.10 | 0.031 | 0.037 | 0.043 |
| A1 | 0.00 | 0.05 | 0.10 | 0.000 | 0.002 | 0.004 |
| A3 | 0.20 REF |  |  | 0.008 REF |  |  |
| b | 0.10 | 0.21 | 0.30 | 0.004 | 0.008 | 0.012 |
| C | 0.10 | 0.14 | 0.25 | 0.004 | 0.005 | 0.010 |
| D | 1.80 | 2.00 | 2.20 | 0.070 | 0.078 | 0.086 |
| E | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 |
| e | 0.65 BSC |  |  | 0.026 BSC |  |  |
| L | 0.10 | 0.20 | 0.30 | 0.004 | 0.008 | 0.012 |
| HE | 2.00 | 2.10 | 2.20 | 0.078 | 0.082 | 0.086 |

## SOLDERING FOOTPRINT*


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

## PACKAGE DIMENSIONS

UDFN6, 1.2x1.0, 0.4P
CASE 517AA-01
ISSUE D


ON Semiconductor and (ill are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

