

41

Microprocessor Support Circuit Type NM1608 Octo-Isolator 8 bit Active Data-Bus Isolator

description

The NM1608 Octo-Isolator is an octal, bi-directional, active, data-bus isolator designed to provide isolation on 8-bit wide microprocessor data-buses and to operate at normal high speed processor rates. All data lines are bidirectional and LS TTL buffered having 3-state outputs controlled by a direction control input and an output enable. The direction and enable input lines can be driven from either side of the isolator providing a high degree of design flexibility. The device is housed in a low profile DIP style 24 pin package with standard 0.6 inch row spacing and 0.1 inch pin pitch. The operating temperature range is 0C to 70C and the typical total power consumption is 500mW at a 2Mbps data rate.

absolute maximum ratings over operating free-air temperature range

Supply voltage Vcc
Input voltage signal pins
Input current signal pins
Voltage applied to outputs when HIGH
High level voltage applied to disable 3-state ouput +7.0V
Isolation breakdown voltage V _{br}
Insulation resistance at 500V DC \ldots
Operating free-air temperature range
Storage temperature range
Lead temperature 1.5mm from case for 10 seconds

Type NM1608 Octo-Isolator 8 bit Active Data-Bus Isolator

. . . .

Parameter	Test Conditions ²		Min	Тур	Max	Unit
VIH High-level input voltage ¹	V _{CC} = 4.75 to 5.25V		2,0			v
VIL Low-level input voltage1	V _{CC} = 4.75 to 5.25V				0.8	v
V _{OH} High-level output voltage ¹	V _{CC} = 4.75V, I _O = -2.6mA		2.4			v
Vol. Low-level output voltage1	Vcc = 4.75V	lo = 12mA			0.4	v
VOL LOW-level output vonage		lo = 24mA			0.5	v
IL Low-level input current ¹	Vcc = 5.25V		1		- 0.2	mA
Ioz Off state current ¹	V _{CC} = 5.25V				±20	μA
IIL Low-level input current ³	V _{CC} = 5.25V				15	mA
Icc Supply current ⁴	V _{CC} = 5.0V			100		mA

electrical specifications over operating free-air temperature range

÷

all typical values are at Ta=25C

Data lines only
VCC applied to both sides of isolator
DIR and EN lines only

4. Supply current for both sides of isolator, each side will be typically 1/2 lcc

switching characteristics V_{CC}+= 5V, Ta = 25C

	Parameter	Test Conditions	Min	Тур	Max	Unit
t PHL	Propagation delay An to Bn or Bn to An	Vcc = 4.75V			60	ns
t PLH						
tTHL	Output transition time	Vcc = 4.75V			15	ns
t _{TLH}		V() = 4.75V			15	
tezh	Output enable time	V _{CC} = 4.75V		30	ກຣ	
tenz		VCC - 4.70V				115
tрzн	Output disable time	Vcc = 4.75V			25	ns
t _{PLZ}		VUL - 4.75V			20	113
tpw	Low-level pulse width at DIR and \overline{EN}^{1}	Vcc = 5.25V			5.5	μS

4

all typical values are at Ta=25C

1. See repetition rate versus pulse width curve.

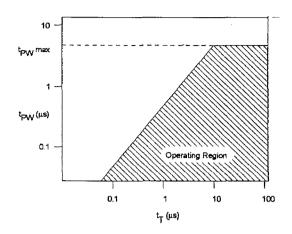
Type NM1608 Octo-Isolator 8 bit Active Data-Bus Isolator

pin description table

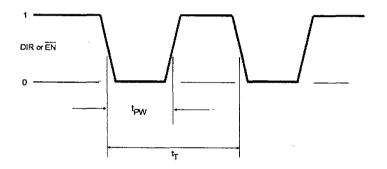
Pin No	Symbol	Name and Function		
1	Vcc A	Positive supply for side A		
22	V _{CC} B	Positive supply for side B		
2	ENA	Output enable input for side A or B (active low) internally pulled u		
21	ENB	Drive from either side, not both		
3	DIRA	Direction control input for side A or B internally pulled up		
23	DIRB	Drive from either side, not both		
12	GNDA	Ground OV for side A		
24	GNDB	Ground OV for side B		
4 – 11	A0 – A7	Data inputs / outputs side A		
13 - 20	B0 B7	Data inputs / outputs side B		

function table

Inputs		Inputs / Outputs		
ENA or ENB	DIRA or DIRB	An	Bn	
L	Ĺ	A = B	inputs	
L	н	inputs	B = A	
н	X	Hi Z	Hi Z	


5

H = HIGH voltage


L = LOW voltage

X = Don't care

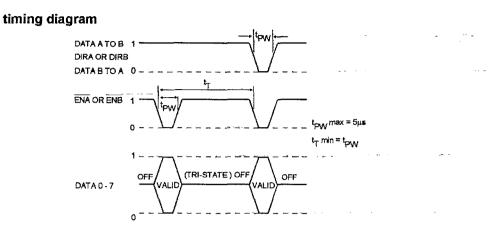
Hi Z = Off state

repetition rate versus pulse width curve

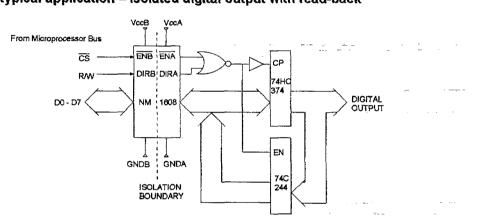
6

 t_{T} = Time between successive H to L transitions on DIR or EN.

 $t_{PW} = Low-level pulse width on DIR or EN.$


Type NM1608 Octo-Isolator 8 bit Active Data-Bus Isolator

-


-

2.0

•

typical application - isolated digital output with read-back

ordering information

Part No.	Function	Package Style		
NM1608	8-bit active bus isolator	1		

7

This page intentionally left blank.

8

--