600 Watt Peak Power Zener Transient Voltage Suppressors

Unidirectional

The NS6A5.0AT3G is designed to protect voltage sensitive components from high voltage, high energy transients. This device has excellent clamping capability, high surge capability, low zener impedance and fast response time. The NS6A5.0AT3G is ideally suited for use in computer hard disk drives, communication systems, automotive, numerical controls, process controls, medical equipment, business machines, power supplies and many other industrial/consumer applications.

Specification Features:

- Peak Reverse Working Voltage of 5 V
- Peak Pulse Power of 600 W (10 x 1000 µsec)
- ESD Rating of Class 3 (>16 kV) per Human Body Model
- ESD Rating of Class 4 (>8 kV) IEC 61000-4-2
- Fast Response Time
- Low Profile Package
- This is a Pb-Free Device

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic

FINISH: All external surfaces are corrosion resistant and leads are

readily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

260°C for 10 Seconds

LEADS: Modified L-Bend providing more contact area to bond pads

1

POLARITY: Cathode indicated by polarity band


MOUNTING POSITION: Any

ON Semiconductor®

http://onsemi.com

PLASTIC SURFACE MOUNT ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS

SMA CASE 403D PLASTIC

MARKING DIAGRAM

6QE = Specific Device Code A = Assembly Location

Y = Year WW = Work Week ■ = Pb-Free Package

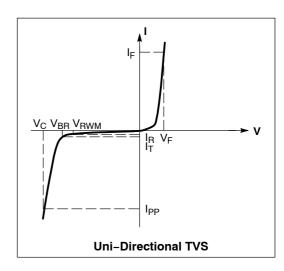
ORDERING INFORMATION

Device	Package	Shipping [†]
NS6A5.0AT3G	SMA (Pb-Free)	5000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Peak Power Dissipation (Note 1) @ T _L = 25°C, Pulse Width = 1 ms	P _{PK}	600	W
DC Power Dissipation @ T _L = 75°C Measured Zero Lead Length (Note 2)	P _D	1.5	W
Derate Above 75°C		20	mW/°C
Thermal Resistance from Junction-to-Lead	$R_{ hetaJL}$	50	°C/W
DC Power Dissipation (Note 3) @ T _A = 25°C Derate Above 25°C	P _D	0.5 4.0	W mW/°C
Thermal Resistance from Junction-to-Ambient	$R_{ hetaJA}$	250	°C/W
Forward Surge Current (Note 4) @ T _A = 25°C	I _{FSM}	40	Α
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to +150	°C


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. 10 X 1000 μs, non-repetitive.
- 2. 1 in square copper pad, FR-4 board.
- 3. FR-4 board, using ON Semiconductor minimum recommended footprint, as shown in 403D case outline dimensions spec.
- 4. 1/2 sine wave (or equivalent square wave), PW = 8.3 ms, duty cycle = 4 pulses per minute maximum.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 3.5$ V Max. @ I_F (Note 5) = 30 A)

Symbol	Parameter
I _{PP}	Maximum Reverse Peak Pulse Current
V _C	Clamping Voltage @ I _{PP}
V _{RWM}	Working Peak Reverse Voltage
I _R	Maximum Reverse Leakage Current @ V _{RWM}
V _{BR}	Breakdown Voltage @ I _T
I _T	Test Current
I _F	Forward Current
V _F	Forward Voltage @ I _F

^{1/2} sine wave (or equivalent square wave), PW = 8.3 ms, non-repetitive duty cycle.

ELECTRICAL CHARACTERISTICS

		V _{RWM}		Breakdown Voltage		9	V _C @ I _{PP}	(Note 8)	C _{typ}	
	Device	(Note 6)	I _R @ V _{RWM}	V_{BR}	V _{BR} (Note 7) Volts		@ I _T	V _C	I _{PP}	(Note 9)
Device	Marking	V	μ Α	Min	Nom	Max	mA	V	Α	pF
NS6A5.0AT3G	6QE	5.0	800	6.40	6.7	7.0	10	9.2	65.2	2700

- 6. A transient suppressor is normally selected according to the working peak reverse voltage (V_{RWM}), which should be equal to or greater than the DC or continuous peak operating voltage level.
- 7. V_{BR} measured at pulse test current I_T at an ambient temperature of 25°C.
- 8. Surge current waveform per Figure 1.
- 9. Bias Voltage = 0 V, F = 1 MHz, $T_J = 25$ °C.

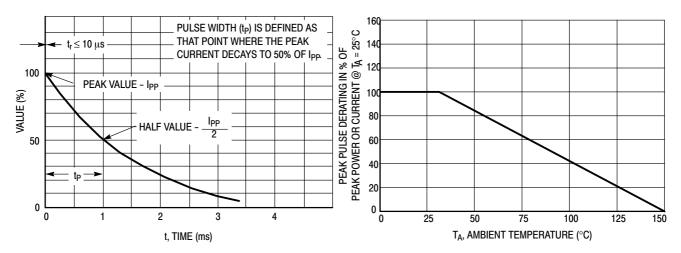
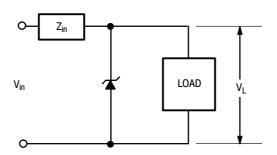



Figure 1. 10 \times 1000 μs Pulse Waveform

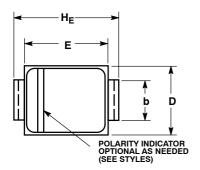
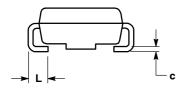
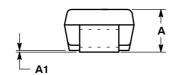

Figure 2. Pulse Derating Curve

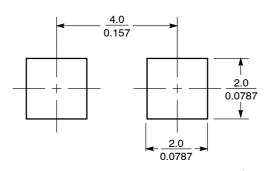
Figure 3. Typical Protection Circuit

PACKAGE DIMENSIONS


SMA CASE 403D-02 ISSUE F



NOTES:


- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- 3. 403D-01 OBSOLETE, NEW STANDARD IS 403D-02.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.97	2.10	2.20	0.078	0.083	0.087	
A1	0.05	0.10	0.15	0.002	0.004	0.006	
b	1.27	1.45	1.63	0.050	0.057	0.064	
С	0.15	0.28	0.41	0.006	0.011	0.016	
D	2.29	2.60	2.92	0.090	0.103	0.115	
E	4.06	4.32	4.57	0.160	0.170	0.180	
HE	4.83	5.21	5.59	0.190	0.205	0.220	
L	0.76	1.14	1.52	0.030	0.045	0.060	

SOLDERING FOOTPRINT*

SCALE 8:1 $\left(\frac{\text{mm}}{\text{inches}}\right)$

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

 ${\color{blue} {\sf SURMETIC}}\ is\ a\ trademark\ of\ Semiconductor\ Components\ Industries,\ LLC.$

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative