Power MOSFET

20 V/–20 V, 4.7 A/–4.0 A, μCool™ Complementary, 2x2 mm, WDFN Package

Features

- WDFN 2x2 mm Package with Exposed Drain Pads for Excellent Thermal Conduction
- Lowest R_{DS(on)} in 2x2 mm Package
- Footprint Same as SC-88 Package
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- ESD Protected
- This is a Pb-Free Device

Applications

- Optimized for Battery and Load Management Applications in Portable Equipment
- Load Switch
- Level Shift Circuits
- DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

	, -				
Paran	neter		Symbol	Value	Unit
Drain-to-Source Voltage	0		V_{DSS}	20	V
Gate-to-Source Voltag	je		V_{GS}	±8.0	V
N-Channel	Steady	$T_A = 25^{\circ}C$	I _D	3.8	Α
Continuous Drain Current (Note 1)	State	$T_A = 85^{\circ}C$		2.7	
Current (Note 1)	t≤5s	$T_A = 25^{\circ}C$		4.7	
P-Channel	Steady	$T_A = 25^{\circ}C$	I _D	-3.2	Α
Continuous Drain Current (Note 1)	State	T _A = 85°C		-2.3	1
Current (Note 1)	t≤5s	$T_A = 25^{\circ}C$		-4.0	1
Power Dissipation	Steady		P_{D}	1.5	W
(Note 1)	State	T _A = 25°C			ļ
	t ≤ 5 s			2.3	
N-Channel	Steady	$T_A = 25^{\circ}C$	I_{D}	2.6	Α
Continuous Drain Current (Note 2)	State	T _A = 85°C		1.9	
P-Channel	Steady	T _A = 25°C	Ι _D	-2.2	Α
Continuous Drain Current (Note 2)	State	T _A = 85°C		-1.6	
Power Dissipation (Note 2)	Steady State	T _A = 25°C	P_{D}	0.71	W
Pulsed Drain Current	N-Ch	t _p = 10 μs	I_{DM}	18	Α
	P-Ch			-16	
Pulsed Drain Current N-Ch $t_p = 10 \mu$		emperature	T_J , T_{STG}	-55 to	°C
			150		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface Mounted on FR4 Board using the minimum recommended pad size of 30 mm², 2 oz Cu.

ON Semiconductor®

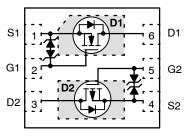
http://onsemi.com

V _{(BR)DSS}	R _{DS(on)} MAX	I _D MAX
	68 mΩ @ 4.5 V	4.7 A
N-Channel 20 V	86 mΩ @ 2.5 V	4.2 A
	120 mΩ @ 1.8 V	3.5 A
D. Obsessed	100 mΩ @ -4.5 V	-4.0 A
P-Channel -20 V	144 mΩ @ –2.5 V	-3.3 A
	200 mΩ @ –1.8 V	-2.8 A

D2

MARKING DIAGRAM

WDFN6 CASE 506AN 1 JNM 6 5 4


Pin 1

JN = Specific Device Code M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTLJD3183CZTAG	WDFN6 (Pb-Free)	3000/Tape & Reel
NTLJD3183CZTBG	WDFN6 (Pb-Free)	3000/Tape & Reel

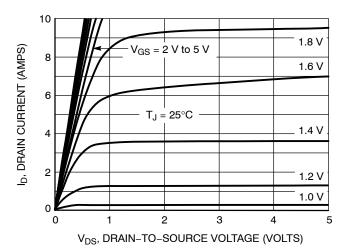
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
SINGLE OPERATION (SELF-HEATED)			•
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	83	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ heta JA}$	177	°C/W
Junction-to-Ambient - t ≤ 5 s (Note 3)	$R_{ heta JA}$	54	
DUAL OPERATION (EQUALLY HEATED)			
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	58	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ heta JA}$	133	°C/W
Junction-to-Ambient – t ≤ 5 s (Note 3)	$R_{ hetaJA}$	40	

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu).

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

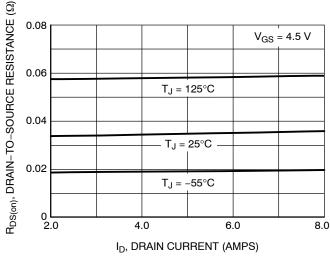

Parameter	Symbol	N/P	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS						•	•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	N	., .,	I _D = 250 μA	20			V
		Р	V _{GS} = 0 V	I _D = -250 μA	-20			1
Drain-to-Source Breakdown Voltage	V _{(BR)DSS} /T _J	N	D (1, 0500	I _D = 250 μA		15		mV/°C
Temperature Coefficient		Р	Ref to 25°C	I _D = -250 μA		13		1
Zero Gate Voltage Drain Current	I _{DSS}	N	V _{GS} = 0 V, V _{DS} = 16 V				1.0	μΑ
		Р	$V_{GS} = 0 \text{ V}, V_{DS} = -16 \text{ V}$	T _J = 25°C			-1.0	
		N	V _{GS} = 0 V, V _{DS} = 16 V	T 0500			10	
		Р	V _{GS} = 0 V, V _{DS} = -16 V	T _J = 85°C			-10	
Gate-to-Source Leakage Current	I _{GSS}	N	V _{DS} = 0 V, V _{GS} = ±8.0 V				±10	μΑ
		Р					±10	
ON CHARACTERISTICS (Note 5)								
Gate Threshold Voltage	V _{GS(TH)}	N I _D = 25		I _D = 250 μA	0.4		1.0	V
		Р	$V_{GS} = V_{DS}$	I _D = -250 μA	-0.4		-1.0	
Gate Threshold Temperature	V _{GS(TH)} /T _J	N	Defte 05°C	I _D = 250 μA		-3.0		mV/°C
Coefficient		Р	Ref to 25°C	I _D = -250 μA		2.0		
Drain-to-Source On Resistance	R _{DS(on)}	N	V _{GS} = 4.5 V , I _D =	= 2.0 A		34	68	mΩ
		Р	$V_{GS} = -4.5 \text{ V}$, $I_D = -2.0 \text{ A}$			68	100	
		N	V _{GS} = 2.5 V , I _D = 2.0 A			42	86]
		Р	$V_{GS} = -2.5 \text{ V}, I_D = -2.0 \text{ A}$			90	144	
		N	V _{GS} = 1.8 V , I _D = 1.7 A			53	120	
		Р	V _{GS} = -1.8 V, I _D =	-1.7 A		125	200	
Forward Transconductance	9FS	N	V _{DS} = 5.0 V, I _D = 2.0 A			7.0		S
		Р	$V_{DS} = -5.0 \text{ V}$, $I_{D} =$	= -2.0 A		6.5		

ELECTRICAL CHARACTERISTICS (T_{.I} = 25°C unless otherwise noted)

Parameter	Symbol	N/P	Test Condition	ons	Min	Тур	Max	Unit
CHARGES, CAPACITANCES AND	GATE RESISTA	NCE				•	•	
Input Capacitance	C _{ISS}	N		V _{DS} = 10 V		355		pF
		Р		V _{DS} = -10 V		450		
Output Capacitance	C _{OSS}	N	1	V _{DS} = 10 V		70		
		Р	f = 1.0 MHz, V _{GS} = 0 V	V _{DS} = -10 V		90		
Reverse Transfer Capacitance	C _{RSS}	N		V _{DS} = 10 V		50		
		Р		V _{DS} = -10 V		62		
Total Gate Charge	Q _{G(TOT)}	N	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10^{\circ}$	V, I _D = 3.8 A		4.6	7.0	nC
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	$V, I_D = -3.8 A$		5.2	7.8	
Threshold Gate Charge	Q _{G(TH)}	N	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10^{\circ}$	V, I _D = 3.8 A		0.3		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	$V, I_D = -3.8 A$		0.3		
Gate-to-Source Charge	Q_{GS}	N	V _{GS} = 4.5 V, V _{DS} = 10	V, I _D = 3.8 A		0.6		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10$	V, I _D = -3.8 A		0.84		
Gate-to-Drain Charge	Q_{GD}	N	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10^{\circ}$	V, I _D = 3.8 A		1.15		
		Р	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V}, I_D = -3.8 \text{ A}$			1.5		
SWITCHING CHARACTERISTICS	(Note 6)							
Turn-On Delay Time	t _{d(ON)}					6.2		ns
Rise Time	t _r	N	$V_{GS} = 4.5 \text{ V}, V_{DD}$	= 5 V,		5.5		
Turn-Off Delay Time	t _{d(OFF)}		$V_{GS} = 4.5 \text{ V}, V_{DD}$ $I_{D} = 2.0 \text{ A}, R_{G} =$	2.0 Ω		15		
Fall Time	t _f					14		
Turn-On Delay Time	t _{d(ON)}					6.6		
Rise Time	t _r	7 _	$V_{GS} = -4.5 \text{ V}, V_{DD} = -5 \text{ V},$ $I_{D} = -2.0 \text{ A}, R_{G} = 2.0 \Omega$			9.0		
Turn-Off Delay Time	t _{d(OFF)}	P				14		
Fall Time	t _f					12.5		
DRAIN-SOURCE DIODE CHARAC	TERISTICS							
Forward Diode Voltage	V_{SD}	N	V 0V T 05 00	I _S = 1.0 A		0.65	1.0	V
		Р	V_{GS} = 0 V, T_J = 25 °C	I _S = -1.0 A		-0.73	-1.0	
		N	V 0V T 405 00	I _S = 1.0 A		0.55		
		Р	$V_{GS} = 0 \text{ V, } T_{J} = 125 ^{\circ}\text{C}$	I _S = -1.0 A		-0.62		
Reverse Recovery Time	t _{RR}	N		I _S = 1.0 A		21		ns
		Р	1	I _S = -1.0 A		23		
Charge Time	t _a	N	V _{GS} = 0 V, dI _S / dt = 100 A/μs	I _S = 1.0 A		10.5		
		Р		I _S = -1.0 A		13		
Discharge Time	t _b	N		I _S = 1.0 A		10.5		1
		Р	1	I _S = -1.0 A		10		
Reverse Recovery Charge	Q _{RR}	N	1	I _S = 1.0 A		7.0		nC
		Р	1	I _S = -1.0 A		10		

^{5.} Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
6. Switching characteristics are independent of operating junction temperatures.

N-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)



 $V_{DS} \ge 5 V$

Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 2. Transfer Characteristics

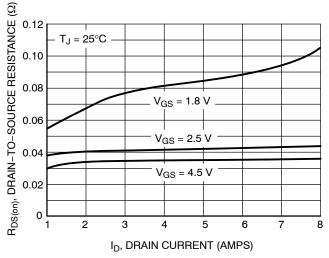
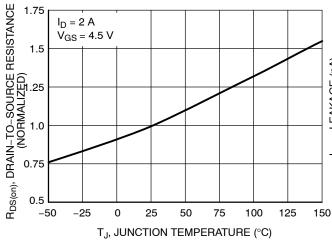
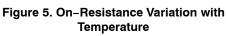




Figure 3. On-Resistance versus Drain Current

Figure 4. On-Resistance versus Drain Current and Gate Voltage

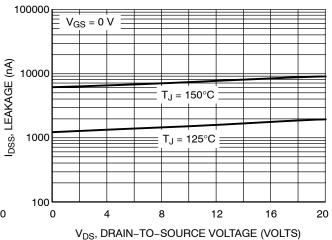
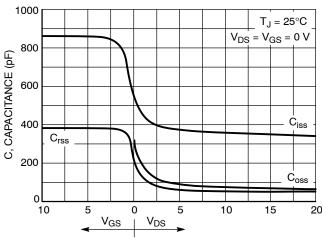



Figure 6. Drain-to-Source Leakage Current versus Voltage

N-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

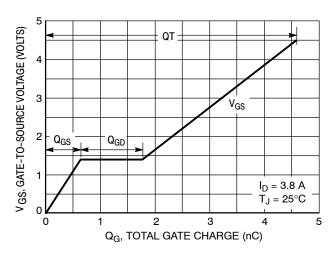


Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

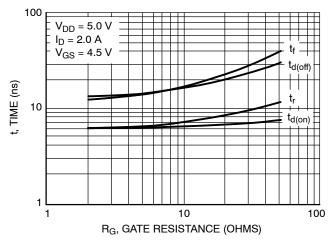


Figure 9. Resistive Switching Time Variation versus Gate Resistance

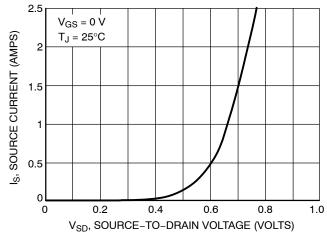


Figure 10. Diode Forward Voltage versus Current

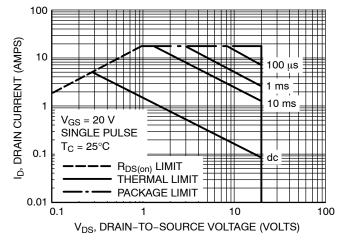


Figure 11. Maximum Rated Forward Biased Safe Operating Area

P-CHANNEL TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

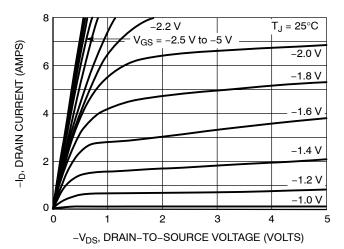


Figure 12. On-Region Characteristics

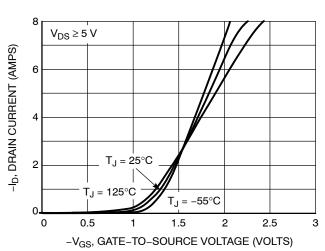


Figure 13. Transfer Characteristics

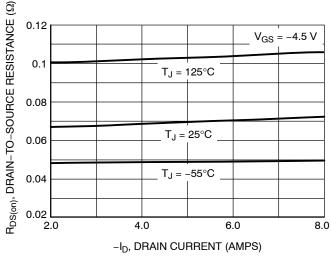


Figure 14. On-Resistance versus Drain Current

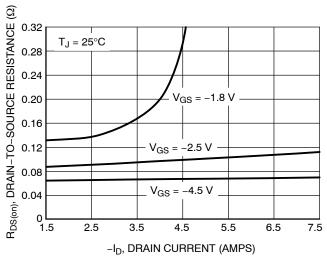


Figure 15. On-Resistance versus Drain Current and Gate Voltage

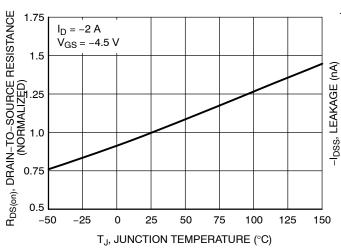


Figure 16. On-Resistance Variation with Temperature

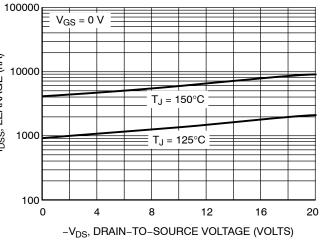


Figure 17. Drain-to-Source Leakage Current versus Voltage

P-CHANNEL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

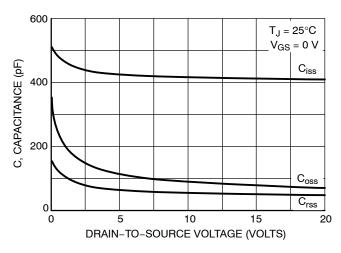


Figure 18. Capacitance Variation

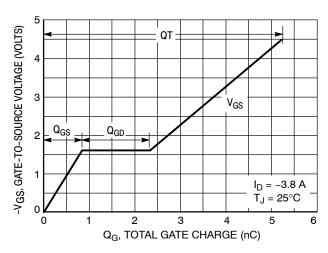


Figure 19. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

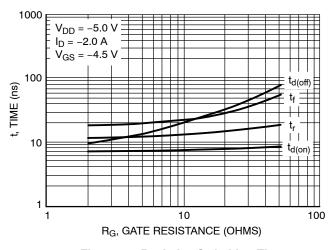


Figure 20. Resistive Switching Time Variation versus Gate Resistance

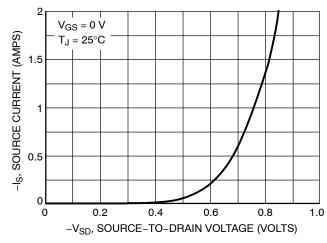


Figure 21. Diode Forward Voltage versus Current

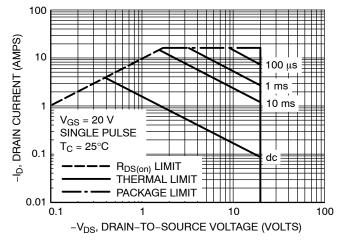


Figure 22. Maximum Rated Forward Biased Safe Operating Area

TYPICAL PERFORMANCE CURVES (T $_{J}$ = 25°C unless otherwise noted)

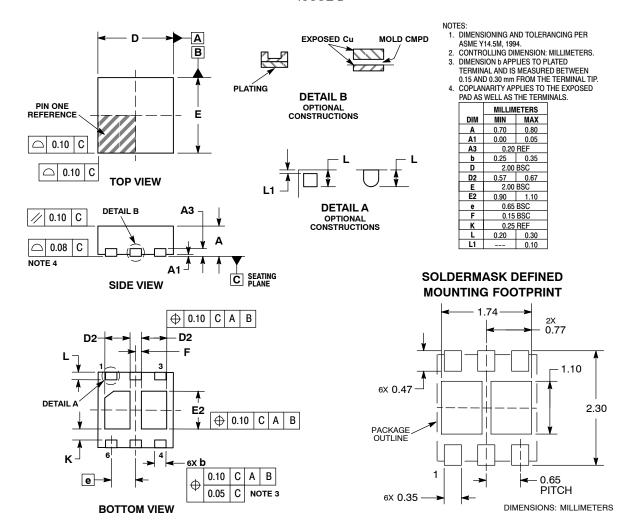



Figure 23. Thermal Response

PACKAGE DIMENSIONS

WDFN6, 2x2 CASE 506AN-01 ISSUE D

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative