Power MOSFET

–20 V, –5.2 A, Single P–Channel, ESD, 1.6x1.6x0.55 mm UDFN μCool [™] Package

Features

- UDFN Package with Exposed Drain Pads for Excellent Thermal Conduction
- Low Profile UDFN 1.6 x 1.6 x 0.55 mm for Board Space Saving
- Ultra Low R_{DS(on)}
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

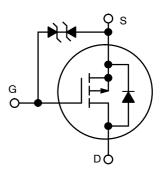
- Optimized for Power Management Applications for Portable Products, Such as Cell Phones, PMP, Media Tablets, DSC, GPS, and Others
- Battery Switch
- High Side Load Switch

MAXIMUM RATINGS (T_J = $25^{\circ}C$ unless otherwise stated)

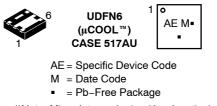
Pa	rameter	Symbol	Value	Unit	
Drain-to-Source Vo	Drain-to-Source Voltage			-20	V
Gate-to-Source Vol	tage		V _{GS}	±8.0	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$	I _D	-5.2	А
Current (Note 1) Continuous Drain	State	$T_A = 85^{\circ}C$		-3.7	
Current (Note 1)	t ≤ 5 s	$T_A = 25^{\circ}C$	1	-6.4	
Power Dissipa- tion (Note 1)	Steady State	$T_A = 25^{\circ}C$	P _D	1.5	W
	t ≤ 5 s	$T_A = 25^{\circ}C$		2.3	
Continuous Drain	Steady	$T_A = 25^{\circ}C$	۱ _D	-3.4	А
Current (Note 2)	State	T _A = 85°C	1	-2.4	
Power Dissipation ((Note 2)	$T_A = 25^{\circ}C$	PD	0.6	W
Pulsed Drain Curre	nt	tp = 10 μs	I _{DM}	-17	А
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 2)			۱ _S	-1	А
Lead Temperature t (1/8" from case for		g Purposes	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

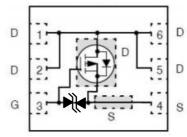
1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).


 Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

ON Semiconductor®


http://onsemi.com

MOSFET						
V _{(BR)DSS}	R _{DS(on)} MAX I _D MAX					
	39 mΩ @ –4.5 V					
–20 V	50 mΩ @ −2.5 V	-5.2 A				
20 0	81 mΩ @ –1.8 V	0.271				
	147 mΩ @ −1.5 V					


P-Channel MOSFET

MARKING DIAGRAM

(*Note: Microdot may be in either location)

(Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL RESISTANCE RATINGS

Parameter		Max	Unit
Junction-to-Ambient – Steady State (Note 3)	R_{\thetaJA}	85	
Junction-to-Ambient – t \leq 5 s (Note 3)	R_{\thetaJA}	55	°C/W
Junction-to-Ambient – Steady State min Pad (Note 4)	$R_{ extsf{ heta}JA}$	200	

Surface-mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
Surface-mounted on FR4 board using the minimum recommended pad size of 30 mm², 2 oz. Cu.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Co	ondition	Min	Тур	Max	Units
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I	_D = –250 μA	-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	I _D = -250 μA	∧, ref to 25°C		13		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = -20 V	$T_J = 25^{\circ}C$			-1.0	μΑ
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V	/ _{GS} = ±8.0 V			±10	μA
ON CHARACTERISTICS (Note 5)							

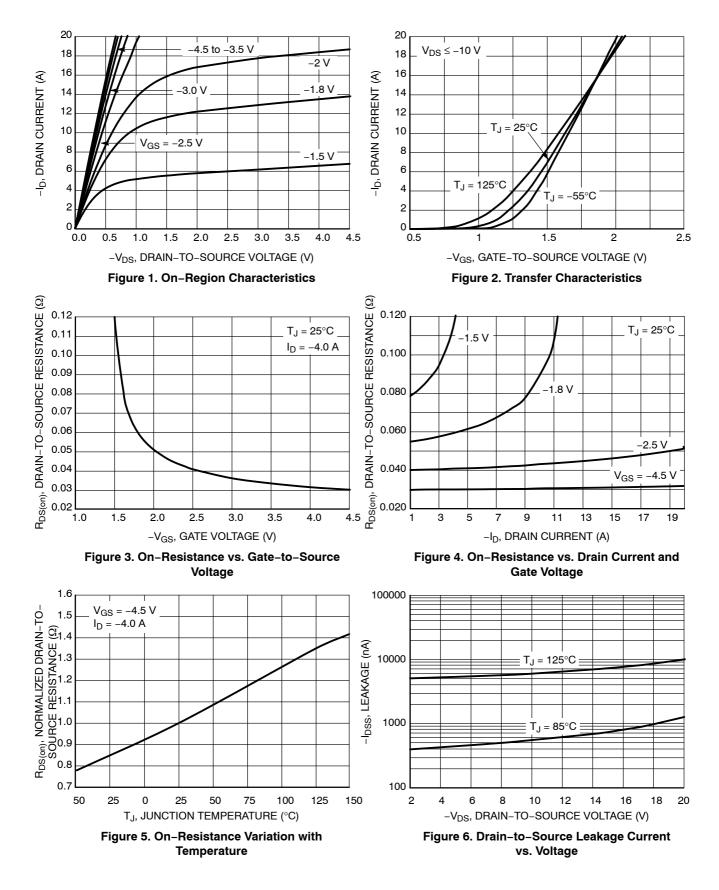
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-0.4		-1.0	V
Negative Threshold Temp. Coefficient	V _{GS(TH)} /T _J			3.0		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = -4.5$ V, $I_D = -4.0$ A		30	39	mΩ
		$V_{GS} = -2.5$ V, $I_D = -2.0$ A		40	50	
		$V_{GS} = -1.8$ V, $I_D = -1.2$ A		55	81	
		V_{GS} = -1.5 V, I _D = -0.5 A		75	147	
Forward Transconductance	9 FS	V _{DS} = -5 V, I _D = -3.0 A		25		S

CHARGES, CAPACITANCES & GATE RESISTANCE

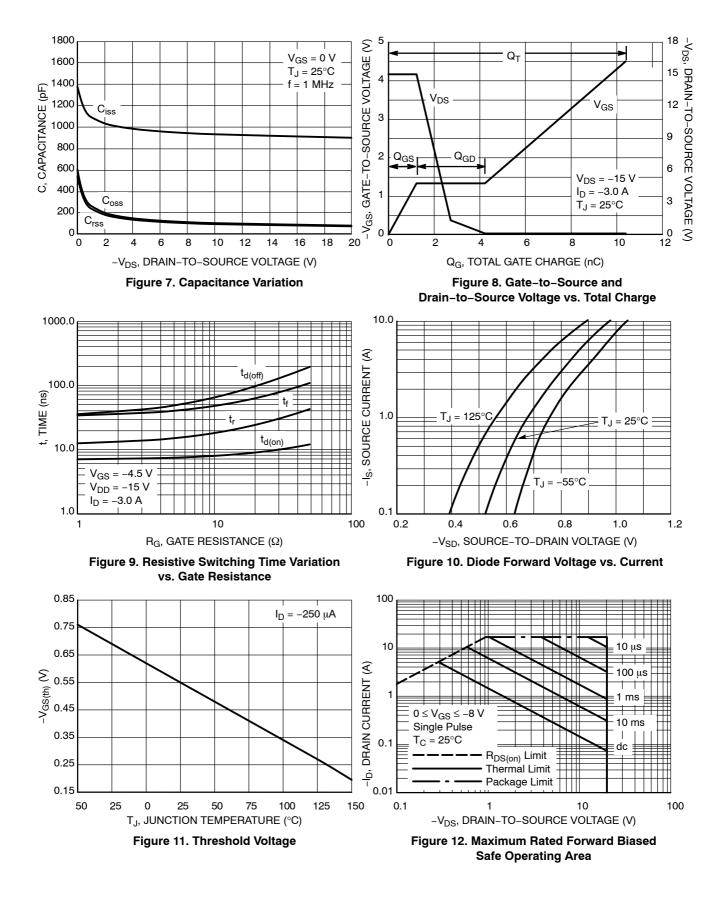
Input Capacitance	C _{ISS}		920	pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz, V _{DS} = -15 V	85	
Reverse Transfer Capacitance	C _{RSS}		80	
Total Gate Charge	Q _{G(TOT)}		10.4	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = -4.5 V, V _{DS} = -15 V; I _D = -3.0 A	0.5	
Gate-to-Source Charge	Q _{GS}	$I_{\rm D} = -3.0 \rm{A}$	1.2	
Gate-to-Drain Charge	Q _{GD}]	3.0	

SWITCHING CHARACTERISTICS, VGS = 4.5 V (Note 6)

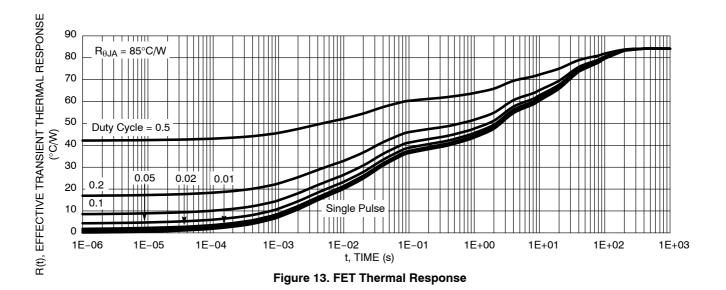
Turn-On Delay Time	t _{d(ON)}		7.2	ns
Rise Time	t _r	V _{GS} = -4.5 V, V _{DD} = -15 V,	12.2	
Turn-Off Delay Time	t _{d(OFF)}	$I_D = -3.0 \text{ A}, R_G = 1 \Omega$	34.7	
Fall Time	t _f		34.8	


DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = -1.0 A	$T_{\rm J} = 25^{\circ}C$	0.67	1.0	V
		I _S = –1.0 A	T _J = 125°C	0.56		
Reverse Recovery Time	t _{RR}			11.1		ns
Charge Time	t _a	V_{GS} = 0 V, dis/dt = 100 A/µs, I_S = –1.0 A		5.8		
Discharge Time	t _b			5.3		
Reverse Recovery Charge	Q _{RR}			4		nC

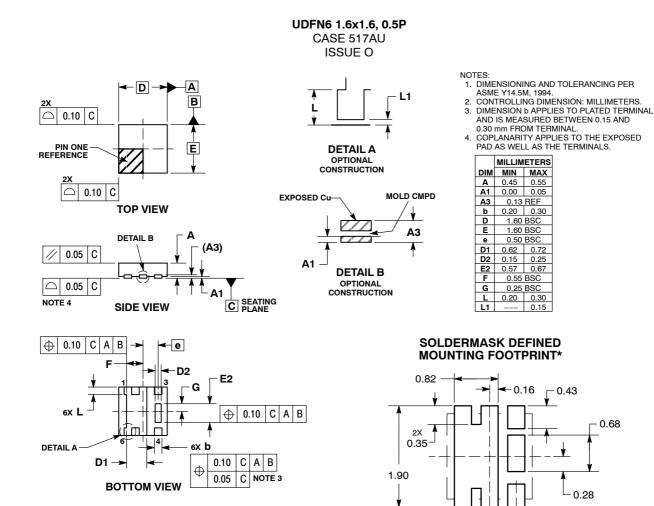

5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



DEVICE ORDERING INFORMATION

Device	Package	Shipping [†]
NTLUS3A39PZTAG	UDFN6 (Pb-Free)	3000 / Tape & Reel
NTLUS3A39PZTBG	UDFN6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

6X 0.32

μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent or any liability nor the rights of others. SCILIC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are specified to the SCILIC of the S intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

0.68

0.50 PITCH

DIMENSIONS: MILLIMETERS

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative