Small Signal MOSFET

-20 V, -200 mA, Single P-Channel, 1.0 x 0.6 mm SOT-1123 Package

Features

- Single P-Channel MOSFET
- Offers a Low R_{DS(on)} Solution in the Ultra Small 1.0 x 0.6 mm Package
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics.
- This is a Pb-Free Device

Applications

- High Side Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Equipment

MAXIMUM RATINGS (T _J = 25° C unless otherwise specified)							
Para	Symbol	Value	Unit				
Drain-to-Source Voltag	je		V _{DSS}	-20	V		
Gate-to-Source Voltag	е		V _{GS}	±8	V		
Continuous Drain	Steady	$T_A = 25^{\circ}C$		-150	1		
Current (Note 1)	State	$T_A = 85^{\circ}C$	I _D	-110	mA		
	t ≤ 5 s	$T_A = 25^{\circ}C$		-200			
Power Dissipation	Steady	T _A = 25°C	PD	-125			
(Note 1)	State				mW		
	$t \le 5 s$			-200			
Pulsed Drain Current	I _{DM}	-600	mA				
Operating Junction and	T _J , T _{STG}	–55 to 150	°C				
Course Current (Dedu D		000					
Source Current (Body I	۱ _S	-200	mA				
Lead Temperature for S (1/8" from case for 1	Τ _L	260	°C				

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.

2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%

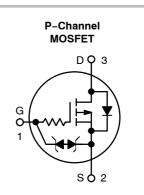
ON Semiconductor®

http://onsemi.com

V _{(BR)DSS} R _{DS(ON)} MAX		I _D Max
–20 V	3.5 Ω @ –4.5 V	
	4.0 Ω @ –2.5 V	
	5.5 Ω @ –1.8 V	–0.20 A
	7.0 Ω @ –1.5 V	

MARKING DIAGRAM

Μ



CASE 524AA

5 = Specific Device Code

(Rotated 90° Clockwise)

= Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTNUS3171PZT5G	SOT-1123 (Pb-Free)	8000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{\theta JA}$	1000	°C/W
Junction-to-Ambient – t = 5 s (Note 3)	$R_{ hetaJA}$	600	

3. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Conditio	on	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \ \mu\text{A}$		-20			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, V_{DS} = -5.0 \text{ V}$ $T_J = 25^{\circ}\text{C}$				-50	
		V_{GS} = 0 V, V_{DS} = -5.0 V	$T_J = 85^{\circ}C$			-100	nA
		V_{GS} = 0 V, V_{DS} = -16 V	$T_J = 25^{\circ}C$			-200	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS} = ±5.0 V				±100	nA
ON CHARACTERISTICS (Note 4)				-			
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -2$	250 μA	-0.4	-0.7	-1.0	V
Drain-to-Source On Resistance	R _{DS(ON)}	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -100 \text{ mA}$			2.0	3.5	Ω
		$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -50 \text{ mA}$			2.6	4.0	
		$V_{GS} = -1.8$ V, $I_D = -20$ mA			3.4	5.5	
		$V_{GS} = -1.5 \text{ V}, \text{ I}_{D} = -10 \text{ mA}$			4.0	7.0	
		V_{GS} = -1.2 V, I _D = -1.0 mA			6.0		
Forward Transconductance	9 FS	$V_{DS} = -5.0 \text{ V}, \text{ I}_{D} = -125 \text{ mA}$			0.26		S
Source-Drain Diode Voltage	V _{SD}	V _{GS} = 0 V, I _S = -200 mA		-0.5		-1.4	V
CHARGES, CAPACITANCES AND GATE	RESISTANCE						
Input Capacitance	C _{ISS}	f = 1 MHz, V _{GS} = 0 V V _{DS} = -15 V			13		pF
Output Capacitance	C _{OSS}				3.4		
Reverse Transfer Capacitance	C _{RSS}				1.6		
SWITCHING CHARACTERISTICS, V_{GS} =	4.5 V (Note 4)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = -4.5 V, V_{DD} = -15 V, I _D = -200 mA, R _G = 2.0 Ω			30		ns .
Rise Time	t _r				56		
Turn-Off Delay Time	t _{d(OFF)}				196		
Fall Time	t _f				145		

4. Switching characteristics are independent of operating junction temperatures

0.36 0.36 4.5 V T_J = 25°C 2.0 V $V_{DS} \ge 5 V$ 0.32 0.32 V_{GS} = 2.2 thru 2.5 V 1.8 V (F) 0.28 0.24 0.20 0.20 0.16 0.12 (G) 0.08 € 0.28 0.28 0.24 0.20 0.16 0.12 0.08 1.6 V 1.4 V 1.2 V T_J = 125°C 1.0 V 0.04 0.04 T_J = 25°C -55°C T_J = С 0 3 2 4 5 0 0.5 1.5 2 2.5 3 0 1 V_{GS}, GATE-TO-SOURCE VOLTAGE (V) V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics $R_{DS(on)}$, DRAIN-TO-SOURCE RESISTANCE (Ω) $R_{DS(on)}$, DRAIN-TO-SOURCE RESISTANCE (Ω) 9.0 3.5 $I_{D} = 200 \text{ mA}$ T_J = 25°C T_{.1} = 25°C 8.0 7.0 3 6.0 V_{GS} = 2.5 V 5.0 2.5 4.0 V_{GS} = 4.5 V 3.0 2 I_D = 20 mA 2.0 1.0 1 .5 2 3 4 5 0.10 0.15 0.20 0.25 0.30 0.35 1 V_{GS}, GATE-TO-SOURCE VOLTAGE (V) ID, DRAIN CURRENT (A) Figure 3. On-Resistance vs. Gate Voltage Figure 4. On-Resistance vs. Drain Current and **Gate Voltage** 1.75 10,000 I_D = 200 mA $V_{GS} = 0 V$ R_{DS(or)}, DRAIN-TO-SOURCE RES-ISTANCE (NORMALIZED) V_{GS} = 4.5 V 1.50 IDSS, LEAKAGE (nA) 1000 1.25 $T_J = 150^{\circ}C$ 1.00 100 $T_J = 125^{\circ}C$ 0.75 0.50 10 -50 -25 25 50 75 100 125 0 5 10 0 150 15 20 T.J., JUNCTION TEMPERATURE (°C) V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 5. On-Resistance Variation with Figure 6. Drain-to-Source Leakage Current Temperature vs. Voltage

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

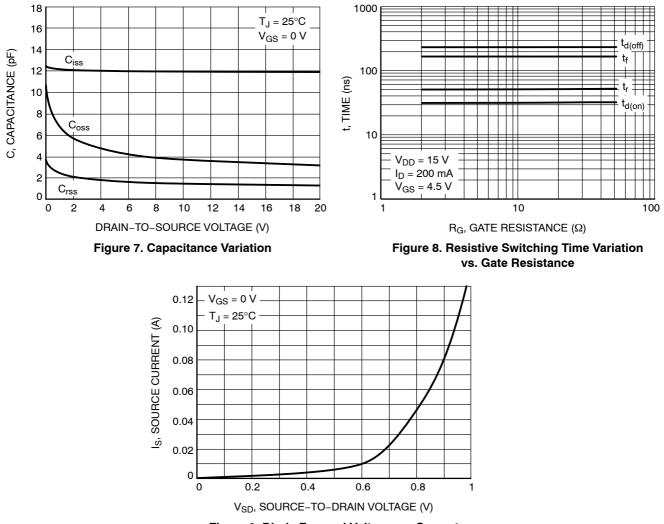
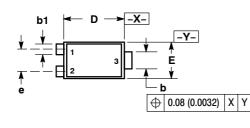
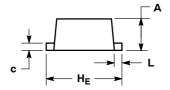
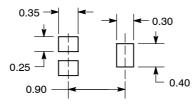




Figure 9. Diode Forward Voltage vs. Current

PACKAGE DIMENSIONS

SOT-1123 CASE 524AA-01 ISSUE B

NOTES:


1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 CONTROLLING DIMENSION: MILLIMETERS.
MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF

BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.34	0.37	0.40	0.013	0.015	0.016
b	0.15	0.22	0.28	0.006	0.009	0.011
b1	0.10	0.15	0.20	0.004	0.006	0.008
С	0.07	0.12	0.17	0.003	0.005	0.007
D	0.75	0.80	0.85	0.030	0.031	0.033
Е	0.55	0.60	0.65	0.022	0.024	0.026
е	0.35		0.40	0.014		0.016
HE	0.95	1.00	1.05	0.037	0.039	0.041
L	0.05	0.10	0.15	0.002	0.004	0.006

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use payers that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

NTNUS3171PZ/D