

NXP RTC PCA85063 PCA8565 PCA21125 PCA2129

Real-time clocks for automotive applications

In automotive applications, exposure to extreme temperatures presents a serious challenge to accurate timing. NXP has the solution.

PCA85063A NEW

- ▶ -40 to +105 °C
- ▶ Interface: I²C-bus, 400 kHz
- ▶ Low power consumption < 300 nA
- For dashboards and infotainment systems
- For accurate and consistent timing

PCA8565

- ▶ -40 to +125 °C
- ▶ Interface: I2C-bus, 400 kHz
- ▶ For battery management
- ▶ For engine and motor control
- For critical applications

PCA21125

- ▶ -40 to +125 °C
- SPI-bus, 6 MHz
- For battery management
- ▶ For engine and motor control
- For critical applications

PCA2129

- ▶ -40 to +125 °C
- ▶ I²C-bus, 400 kHz & SPI-bus, 6.5 MHz
- ▶ For dashboards and infotainment systems
- ▶ High timing accuracy via temperature-compensated oscillator
- All clocks are exact and synchronous

Application	PCA85063	PCA8565	PCA21125	PCA2129T
Dasboard / infotainment	ldeal fit	Good fit	Good fit	Ideal fit
Battery charging	Good fit	Ideal fit	Ideal fit	Good fit
System timing	Ideal fit	Ideal fit	Ideal fit	Ideal fit
Accurate time distribution	Good fit			Ideal fit
Temperature range	-40 to +105 °C	-40 to +125 °C	-40 to +125 °C	-40 to +85 °C
AEC-Q100 grade	2	1	1	3

Our real-time clocks (RTCs) offer superior performance in critical automotive applications

PCA2129 block diagram

- Consistent timing
- Independent timer
- ▶ Independent watchdog function for system supervision
- Periodic interrupts to initiate processes
- ▶ Alarm function with interrupt
- Complete date and time from seconds to years
- Time-stamping events, independent of microcontroller
- ▶ Timing under severe conditions, e.g. up to +125 °C
- Electric tuning, with no external capacitors needed for PCA85063 and PCA2129
- Highly accurate and uninterrupted time tracking using temperature-compensated quartz oscillator and battery backup system
- Oscillator optimized for quartz crystals in automotive-grade ceramic package
- ▶ Interfaces to I²C and/or SPI bus

OM13513 evaluation board for PCA2129T

OM13515 evaluation board for PCA85063

Automotive RTC selection guide

Product number	PCA85063AT	PCA8565TS	PCA21125TS	PCA2129T
Interface	I²C-bus	l²C-bus	SPI	SPI, I'C-bus
Temperature range	-40 to +105 °C	-40 to +125 °C	-40 to +125 °C	-40 to +85 °C
Special feature	Low power	Very wide temperature range	Very wide temperature range	High timing accuracy
Demo board* User manual	OM13515 UM10788			OM13513 UM10762
Package	TSSOP8	TSSOP8	TSSOP14	SO161

* The I²C-bus demo boards are supported by the I²C-bus USB dongle OM13518 (User Manual UM10789)

www.nxp.com

© 2015 NXP Semiconductors N.V.

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: May 2015 Document order number: 9397 750 17665 Printed in the Netherlands