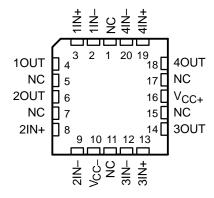
RC4136, RM4136, RV4136 QUAD GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

The RM4136 and RV4136 are obsolete and are no longer supplied.

SLOS072A - MARCH 1978 - REVISED JANUARY 2002

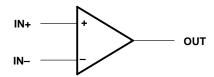
- Continuous Short-Circuit Protection
- Wide Common-Mode and Differential Voltage Ranges
- No Frequency Compensation Required
- Low Power Consumption
- No Latch-Up
- Unity-Gain Bandwidth . . . 3 MHz Typ
- Gain and Phase Match Between Amplifiers
- Designed To Be Interchangeable With Raytheon RC4136, RM4136, and RV4136
- Low Noise . . . 8 nV√Hz Typ at 1 kHz

description


The RC4136, RM4136, and RV4136 are quad general-purpose operational amplifiers, with each amplifier electrically similar to the μ A741, except that offset null capability is not provided.

The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage-follower applications. The devices are short-circuit protected and the internal frequency compensation ensures stability without external components.

The RC4136 is characterized for operation from 0°C to 70°C, the RM4136 is characterized for operation over the full military temperature range of -55°C to 125°C, and the RV4136 is characterized for operation from -40°C to 85°C.


RM4136...J OR W PACKAGE ALL OTHERS ... D OR N PACKAGE (TOP VIEW) 14 🛮 4IN-1IN-1IN+ [13 ¶ 4IN+ 10UT [12 40UT 3 20UT [11 V_{CC+} 5 10 ¶ 3OUT 2IN- [9 3IN+ 8 3IN− V_{CC}

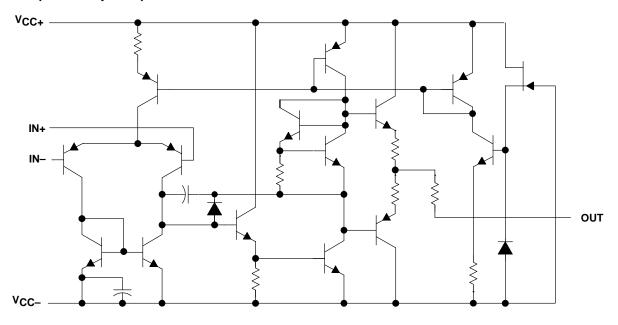
RM4136 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

symbol (each amplifier)

AVAILABLE OPTIONS

	VIOMAX	PACKAGE								
TA	AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (N)	FLAT (W)				
0°C to 70°C	6 mV	RC4136D	_	_	RC4136N					
-40°C to 85°C	6 mV	RV4136D	_	_	RV4136N	_				
–55°C to 125°C	4 mV	_	RM4136FK	RM4136J	_	RM4136W				


The D packages are available taped and reeled. Add the suffix R to the device type (e.g., RC4136DR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

schematic (each amplifier)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage (see Note 1): V _{CC+} RC4136 and RV4136	18 V
V _{CC+} RM4136	22 V
V _{CC} RC4136 and RV4136	
V _{CC} _ RM4136	
Differential input voltage, V _{ID} (see Note 2)	$\dots \dots \pm 30 \ V$
Input voltage, V _I (any input) (see Notes 1 and 3)	
Duration of output short circuit to ground, one amplifier at a time (see Note 4)	Unlimited
Continuous total dissination	On a Discission Dadis Table
Continuous total dissipation	See Dissipation Rating Table
Package thermal impedance, θ _{JA} (see Note 5): D package	
Package thermal impedance, θ_{JA} (see Note 5): D package	
Package thermal impedance, θ_{JA} (see Note 5): D package	86°C/W
Package thermal impedance, θ_{JA} (see Note 5): D package N package	
Package thermal impedance, θ_{JA} (see Note 5): D package	
Package thermal impedance, θ_{JA} (see Note 5): D package	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC-.

- 2. Differential voltages are at IN+ with respect to IN-.
- 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
- 4. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.
- 5. The package thermal impedance is calculated in accordance with JESD 51-7.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE T _A	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
FK	800 mW	11.0 mW/°C	77°C	800 mW	715 mW	275 mW
J	800 mW	11.0 mW/°C	77°C	800 mW	715 mW	275 mW
W	800 mW	8.0 mW/°C	50°C	640 mW	520 mW	200 mW

SLOS072A - MARCH 1978 - REVISED JANUARY 2002

recommended operating conditions

		MIN	MAX	UNIT
V _{CC+}	Supply voltage	5	15	V
VCC-	Supply voltage	-5	-15	V

electrical characteristics at specified free-air temperature, $V_{CC+} = 15 \text{ V}$, $V_{CC-} = -15 \text{ V}$

	DAD AMETED	TEST CONDITIONS†		RC4136		RM4136			RV4136			UNIT	
ľ	PARAMETER	TEST CONDITIO	N5 i	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
	Input offset		25°C		0.5	6		0.5	4		0.5	6	
V_{IL}	voltage	V _O = 0	Full range			7.5			6			7.5	mV
			25°C		5	200		5	150		5	200	
I _{IO}	Input offset	V _O = 0	Full			200			130			200	nA
-10	current	1.0 °	range			300			500			500	""
			25°C		140	500		140	400		140	500	
l _{IB}	Input bias current	VO = 0	Full range			800			1500			1500	nA
Vi	Input voltage range		25°C	±12	±14		±12	±14		±12	±14		V
	Massinas na a als	$R_L = 10 \text{ k}\Omega$	25°C	±12	±14		±12	±14		±12	±14		
Vом	Maximum peak output voltage	$R_L = 2 k\Omega$	25°C	±10	±13		±10	±13		±10	±13		V
VOIVI	swing	$R_L \ge 2 k\Omega$	Full range	±10			±10			±10] '
	Large-signal	V- 140.V	25°C	20	300		50	350		20	300		
AVD	differential voltage amplification	$V_O = \pm 10 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$	Full range	15			25			15			V/mV
B ₁	Unity-gain bandwidth		25°C		3			3.5			3		MHz
rį	Input resistance		25°C	0.3*	5		0.3*	5		0.3*	5		MΩ
CMRR	Common-mode rejection ratio	$V_O = 0$, $R_S = 50 \Omega$	25°C	70	90		70	90		70	90		dB
kSVS	Supply-voltage sensitivity (ΔV _{IO} /ΔV _{CC})	$V_{CC} = \pm 9 \text{ V to } \pm 15 \text{ V},$ $V_{O} = 0$	25°C		30	150		30	150		30	150	μV/V
Vn	Equivalent input noise voltage (closed loop)	AVD = 100, BW = 1 Hz, f = 1 kHz, RS = 100 \Omega	25°C		8			8			8		nV√Hz
			25°C		5	11.3		5	11.3		5	11.3	
ICC	Supply current (all four amplifiers)	$V_O = 0$, No load	MIN T _A		6	13.7		6	13.3		6	13.7	mA
	(an roar ampiniors)		MAX T _A		4.5	10		4.5	10		4.5	10	
	Total power	V _O = 0, No load	25°C		150	340		150	340		150	340	mW
P_{D}	dissipation		MIN T _A		180	400		180	400		180	400	
	(all four amplifiers)		MAX T _A		135	300		135	300		135	300	
	Crosstalk attenuation (VO1/VO2)	$A_{VD} = 100,$ f = 10 kHz, $R_{S} = 1 \text{ k}\Omega$	25°C		105			105			105		dB

^{*} This parameter is not production tested.

[†] All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range is 0°C to 70°C for RC4136, –55°C to 125°C for RM4136, and –40°C to 85°C for RV4136. Minimum T_A is 0°C for RC4136, –55°C for RM4136, and –40°C for RV4136. Maximum T_A is 70°C for RC4136, 125°C for RM4136, and 85°C for RV4136.

RC4136, RM4136, RV4136 QUAD GENERAL-PURPOSE OPERATIONAL AMPLIFIERS

SLOS072A - MARCH 1978 - REVISED JANUARY 2002

The RM4136 and RV4136 are obsolete and are no longer supplied.

operating characteristics, V_{CC+} = 15 V, V_{CC-} = -15 V, T_A = 25°C

PARAMETER		TE	TYP	UNIT	
t _r	Rise time	$V_I = 20 \text{ mV},$	$C_L = 100 \text{ pF}, R_L = 2 \text{ k}\Omega$	0.13	μs
	Overshoot factor	$V_I = 20 \text{ mV},$	$C_L = 100 \text{ pF}, R_L = 2 \text{ k}\Omega$	5	%
SR	Slew rate at unity gain	V _I = 10 V,	$C_L = 100 \text{ pF}, R_L = 2 \text{ k}\Omega$	1.7	V/μs

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated