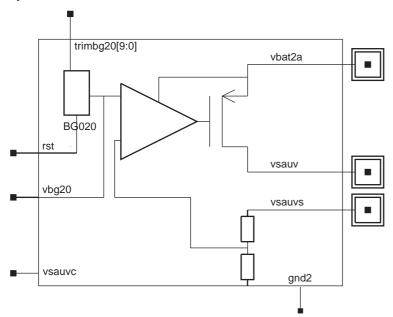
Features


- Low Quiescent Current, Low Drop Out Voltage Regulator
- 2.5V Fixed Output Voltage
- 3V to 5.5V Supply Operation
- 5 mA Maximum Load Current
- Power-down Mode Consumption Less Than 1 μA
- 0.35 µm CMOS Technology
- Typical Application: Real Time Clock (RTC), Backup Battery Supply in Mobile Terminals
- Maximum Current Consumption 10 µA

Description

RE031 is a Low Drop Out (LDO) voltage regulator macrocell with a fixed 2.5V output voltage, rated for loads up to 5 mA. It is designed to be integrated with other analog cells, digital logic, microcontrollers, DSP cores and memory blocks into system-on-chip products.

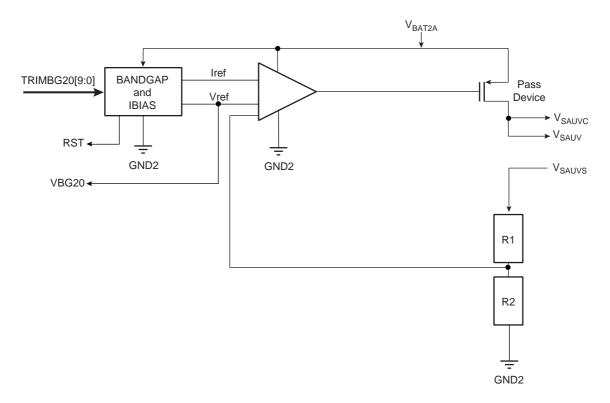
The circuit consists of a PMOS pass device, an error amplifier and a feedback resistive network, sized to achieve the required closed loop gain. These blocks make up the regulating loop. An internal reference voltage (bandgap voltage) has been included. The target reference voltage is 1.2V, with a tolerance of 4%, delivered by an external trimming code. Current reference is generated inside the cell through a circuit supplied by V_{BAT} . The remote sense terminal, V_{SAUVS} , provides regulation at the load, by connecting it together with the output terminal, V_{SAUV} , near a critical point to improve the regulation performance (e.g., connecting them at the package pin by double bonding thus avoiding the bonding resistance influence). A capacitor of 2.2 μF connected from V_{SAUV} to ground is needed as external compensation.

Figure 1. Symbol⁽¹⁾

Note: 1. Pin names are written as they appear on the user screen when the symbol is opened in the design tool environment.

Embedded ASIC Macrocell: Power Management for Mobile Terminals (PM)

RE031
Fixed 2.5V
5 mA
Low Quiescent
Current
LDO Voltage
Regulator



Functional Diagram

Figure 2. Functional Diagram

Pin Description

Pin Name	I/O	Туре	Function	Value
V_{BAT2A}	Power supply	External pad	Power supply	3V to 5.5V
V _{SAUV}	Analog output	External pad	Output voltage	2.4V to 2.6V
V _{SAUVS}	Analog input	External pad	Sense voltage	2.4V to 2.6V
V _{SAUVC}	Analog output	Internal pin	Output voltage	2.4V to 2.6V
GND2	Ground	Internal pin	Ground	0
TRIMBG20	Digital bus	Internal pin	Bandgap Reference Trimming	0 to V _{SAUV}
RST	Digital output	Internal pin	POR signal	0 to V _{SAUV}
VBG20	Analog output	Internal pin	Voltage reference	1.231V

RE031 2.5V 5 mA LDO Voltage Regulator

Absolute Maximum Ratings*

V _{IN}	0.3V to 6.5V
Digital Signals	0.3V to 5.5V
Output Current	Internally Limited
Junction Temperature	20°C to 150°C

*NOTICE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Specifications⁽¹⁾

 T_A = -20°C to +85°C, supply voltage = 3V to 5.5V unless otherwise specified, output capacitance = 2.2 μ F.

Table 1. Electrical Characteristics

Symbol	Parameter	Condition		Min	Тур	Max	Unit
V _{SAUVC}	Auxiliary Operating Supply Voltage			2.4	2.5	2.6	V
V _{SAUV}	Output Voltage			2.4	2.5	2.6	V
I _{SAUV}	Output Current					5	mA
I_{QQ}	Quiescent Current					10	μA
ΔV_{DC}	Line Regulation	I _{SAUV} = 5 mA			12		mV
ΔV_{TRAN}	Transient Line Regulation	$I_{SAUV} = 5 \text{ mA}$ rise time = fall time = 5 μ s			37		mV
ΔV_{DC}	Load Regulation	10% - 90% of max I _{SAUV}			10		mV
ΔV_{TRAN}	Transient Load Regulation	10% - 90% of max I _{SAUV} rise time = fall time = 5 µs			5		mV
PSRR	Power Supply Rejection Ratio at Full Load	V _{BAT} = 3V	@100 Hz		-55		dB
			@1 kHz		-35		dB
			@20 kHz		-12		dB
			@100 kHz		-12		dB
		V _{BAT} = 4.25V	@100 Hz		-50		dB
			@1 kHz		-35		dB
			@20 kHz		-13		dB
			@100 kHz		-13		dB
		V _{BAT} = 5.5V	@100 Hz		-40		dB
			@1 kHz		-35		dB
			@20 kHz		-13		dB
			@100 kHz		-10		dB
V _N	Output Noise	Bandwidth = 10 Hz to 100 kHz; output current = 5 mA			1051		μ V _{RMS}
I _{SD}	Shut Down Current					1	μA

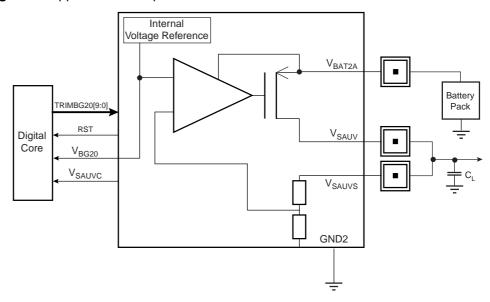
Note: 1. Obtained by considering the parasitics of a TFBGA100 Package.

Control Modes

Trimming

The bandgap inside RE031 has trimming capability, i.e., it is possible to compensate the bandgap resistance variations due to process gradients through the TRIMBG20[9:0] signal. In order to reduce the sensitivity of the bandgap voltage to resistance variations, the trimming has been designed to compensate up to $\pm 40\%$ of resistance variations.

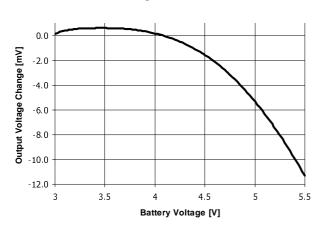
Table 2. Truth Table

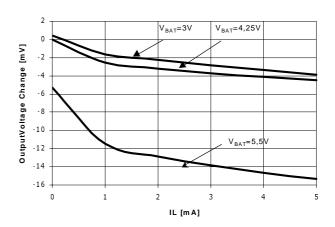

Resistance Variation	TRIMBG20[9:0]
+35% to +40%	1001000000
+20% to +35%	0101000000
+5% to +25%	0011000000
-5% to +5%	000000000
-15% to -5%	0001100000
-22.5% to -15%	0001010000
-27.5% to -22.5%	0001001000
-32.5% to -27.5%	0001000100
-35% to -32.5%	0001000010
-37.5% to -35%	0001000001
-40% to -37.5%	0001000000

Application Example

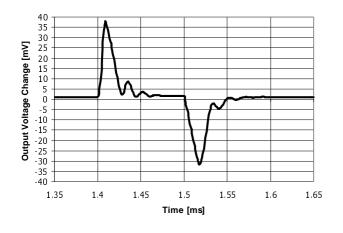
A ceramic capacitor of 2.2 μ F with ESR between 20 m Ω and 250 m Ω connected from V_{SAUV} to ground is needed for external compensation.

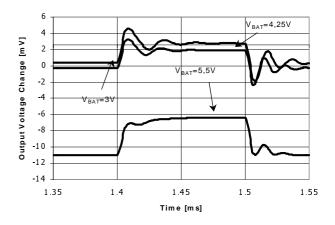
Description	Min	Тур	Max	Units
Capacitor (C _L)	1.8	2.2	2.6	μF


Figure 3. Application Example


RE031 2.5V 5 mA LDO Voltage Regulator

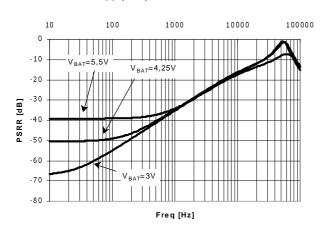
Typical Performance Characteristics (Conditions specified on page 7.)

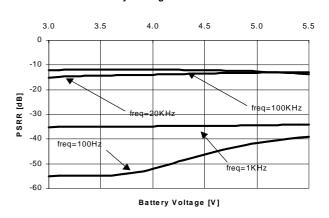

Static Line Regulation at Full Load


Static Load Regulation

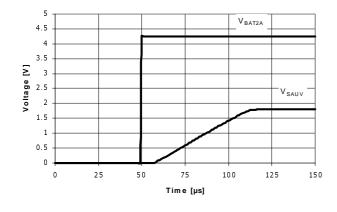
Transient Line Regulation at Full Load

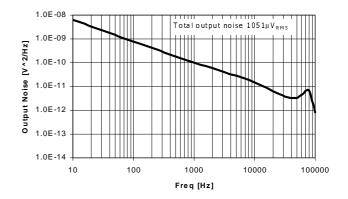
Transient Load Regulation





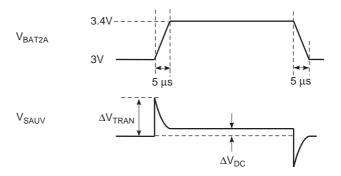
Typical Performance Characteristics (Conditions specified on page 7.)


Power Supply Rejection Ratio at Full Load


Power Supply Rejection Ratio at Full Load Versus Battery Voltage in Low Power Mode

LDO Startup at Full Load for Vbat = 4.25V in Low Power Mode

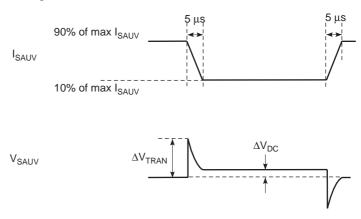
Output Noise Spectrum at Full Load and Vbat=4.25V


RE031 2.5V 5 mA LDO Voltage Regulator

Terminology

Line Regulation

Measures the maximum transient and DC variations of the output voltage of the LDO when the supply changes between two specified values with fixed load current; minimum rise time and fall time is $5 \, \mu s$.


Figure 4. Line Regulation

Load Regulation

Measures the maximum transient and DC variations of the output voltage of the LDO when the load current changes between two specified values with fixed power supply; minimum rise time and fall time is $5 \, \mu s$.

Figure 5. Load Regulation

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site

http://www.atmel.com

© Atmel Corporation 2003.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL®, the Atmel logo and combinations thereof are registered trademarks of Atmel Corporation or its subsidiaries.

Other terms and product names may be the trademarks of others.

