REAL TIME CLOCK MODULE RTC-64611/64613 APPLICATION MANUAL

EPSON

\square Characteristics

1. Absolute maximum ratings

Item		Symboi	Condition	Rated value	Unit
Supply voltage *		$V_{D D}$	-	$-0.5 \sim+7.0$	V
Input voltage *		$V_{\text {IN }}$	-	$-0.5 * * \sim V_{D D}+0.3$	v
Allowable output current		$1 l_{0} \quad 1$	-	5	mA
Total allowable output current		$\underline{\Sigma} \mathrm{I}_{0} 1$	-	50	mA
Storage temperature	RTC-64611		$\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$	$-55 \sim+85$	${ }^{\circ} \mathrm{C}$
	RTC-64613			$-55 \sim+125$	
Soldering conditions		Tsos	RTC-64611 (Lead part)	Temperature: $260^{\circ} \mathrm{C}$ or less	
		RTC.64613	Under $260^{\circ} \mathrm{C}$ within $10 \sec \times 2$ or under $230^{\circ} \mathrm{C}$ within 3 min .		

*Allowable value for GND. * * -0.3 V for 50 ns pulse width

2. Operating range

Item	Symbol	Condition	Range	Unit
Supply voltage	V_{DD}	$\mathrm{Ta}=-20 \sim+75^{\circ} \mathrm{C}$	$4.5 \sim 5.5$	$-20 \sim+75$
Operating temperature	$\mathrm{T}_{\mathrm{OPR}}$	$\mathrm{V}_{\mathrm{DD}}=4.5 \sim 5.5 \mathrm{~V}$	V	

3. Frequency characteristics

Item		Condition	Range	Unit
Frequency tolerance	RTC-64611A	$\begin{gathered} \mathrm{Ta}=25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \end{gathered}$	$+15 /-5(5 \pm 10)$	PPM
	RTC-64611B		$+55 /-45(5 \pm 50)$	
	RTC.64613A		$+25 /-15(5 \pm 20)$	
	RTC-64613		$+55 /-45(5 \pm 50)$	
Temperature characteristics		$-10 \sim+70^{\circ} \mathrm{C}$ (Standard at $25^{\circ} \mathrm{C}$)	$+10 /-120$	PPM
		$-20 \sim+75^{\circ} \mathrm{C}$ (Standard at $25^{\circ} \mathrm{C}$)	$+10 /-220$	
Aging		$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{pb}}=5 \mathrm{~V}$ tirst year	± 5	PPM/year
Voltage characteristics		$\mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4.5 \sim 5.5 \mathrm{~V}$	± 5	FPM/V

4. Data holding characteristics at low supply voltages

Hem	Symbol	Condition	MAN	TYP	MAX	Unit
Data holding voltage	$V_{\text {DR }}$	$\overline{C S} \geq V_{D D}-0.2 \mathrm{~V}$	2.0	-	4.5	V
Data holding current consumption	1 luotr	$v_{D D}=2.0, \overline{C S} \geq 1.8 \mathrm{~V}$ H.START/STOP 31.8 V $\overline{\operatorname{IRQ}}$ with 1 MHz kept open.	-	-	2.0	${ }_{\mu} \mathrm{A}$
Chip select data hold time	$\mathrm{T}_{\text {cor }}$	See Fig. 1.	0	\cdots	-	ns
Operation recovery time	T_{s}		$85\left(t_{\mathrm{kc}}\right)$	-	-	ns

Note: $\mathrm{t}_{\mathrm{Rc}} \cdots \cdots$ Read cycle time

5. Oscillation characteristics and control signal timing.

Item	Symboi	Condition	MIIN	TYP	MAX	Unit
Crystal oscillation start time	Toss	See Fig. 2.	-	-	3.0	sec
$\overline{\mathrm{FQQ}}$ release time	T_{tR}	See Fig. 3.	-	-	2.0	$\mu \mathrm{sec}$
H.START/ $\overline{\text { STOP }}$ control delay time	$T_{16: 3}$	See Fig. 4.	-	-	185	$\mu \mathrm{sec}$

Note 1: Oscillation start is defined as $\mathrm{Ta}=-20 \sim+75^{\circ} \mathrm{C}$ at the applied voltage of $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$.
The oscillation start time at $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ or less cannot be specified.
Start at temperature: $\mathrm{Ta}=-20 \sim+75^{\circ} \mathrm{C}$.

Item	Symbel	Condition	MIN	TYP	MAX	Unit
Reset delay time	$T_{\text {RD }}$	See Fig. 5.	-	-	125	$\mu \mathrm{sec}$
Reset time	$\mathrm{T}_{\text {Kst }}$		-	122	125	$\mu \mathrm{sec}$
ADJ delay time	$\mathrm{T}_{\text {AD }}$	See Fig. 5.	-	-	125	$\mu \mathrm{sec}$
ADJ time	$\mathrm{T}_{\text {AB }}$			122	125	$\mu \mathrm{sec}$

Note 2: When Reset and ADJ have been set, set the next Reset and ADJ after operation is finished.
Both Reset and ADJ may be set simultaneously.

Fig. 1 Low Voltage Data holding Wave Form

Note: $\overline{\mathrm{CS}}$ control the address buffer, data buffer, $\overline{W E}$ buffer, and $\overline{O E}$ buffer. When the battery backup mode is controlled, the $V_{I N}$ level (address, data, and $\overline{W E}$ and $\overline{\mathrm{OE}}$) may be at a high impedance.

Fig. 3 ITRQ Control Timing

Fig. 5 RESET Contral Timing

Fig. 2 Oscillation start time of Timing Wave Form

Fig. 4 H-START/STOP Control Timing
\qquad
H.START/ $\stackrel{\text { STOP }}{ }$

Fig. 6 ADJ Control Timing

6. DC characteristics

Item	Symbol	Measuring conditions	$V_{D D}=5 \mathrm{~V} \pm 10 \%$		$V_{\text {bp }}=2 \mathrm{~V}$		Unit
			MIN	MAX	MIN	MAX	
High level input voltage	V_{11}	-	2.2	$V_{\text {Du }}$	$\mathrm{V}_{\mathrm{DD}}-0.2$	V_{bb}	V
Low level input voltage	$V_{\text {IL }}$	-	-0.3	0.8	-0.3	0.2	V
Input leak current	I_{N}	-	-	± 2	-	± 2	$\mu \mathrm{A}$
Three-state leak current	$\mathrm{I}_{\text {TSL }}$	-	-	± 10	-	± 10	$\mu \mathrm{A}$
Output leak current	$\mathrm{ILOH}^{\text {LOP }}$	-	-	± 10	\cdots	± 10	$\mu \mathrm{A}$
High level output voltage (excl. $1 \mathrm{~Hz}, \overline{\mathrm{R} Q}$)	$V_{\text {OH }}$	$\mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}$	2.4	-	-	-	V
Low level output voltage	$V_{0 .}$	$\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$	-	0.4	-	-	V
Input capacity	$\mathrm{C}_{\text {IN }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	12.5	-	-	pF
Output capacity	Cont	fa	-	12.5	-	-	pF
Current consumption (at bus access)	1 m	No load. min. cycle	-	2.0	-	-	mA

7. AC characteristics (Unless otherwise specified,)
(I) AC characteristics measuring conditions (applicable to the read and write cycles)
(1) Inout pulse level: $0.8-2.4 \mathrm{~V}$
(2) Input rise/fall time: 5 ns
(3) I/O timing reference level: 1.5 V
(4) Output load: 1 TTL gate $+\mathrm{C}_{\mathrm{L}}(100 \mathrm{pF})$
(including the scope and jig capacity)
(2) Read cycle

Read cycle	Symbol	MIN	MAX	Unit
Read cycle time	t_{sc}	85	-	ns
Address access time	$t_{A A}$	-	85	ns
Chip select access time	$t_{\text {cics }}$	-	45	ns
Output enable access time	t_{6}	-	45	ns
Output hold time	$\mathrm{t}_{6 \mathrm{i}}$	10	-	ns
Chip select/output set time	$\mathrm{t}_{\mathrm{cLL} \mathrm{z}}$	10	-	ns
Output enable /output set time	$t_{\text {oLz }}$	5	-	ns
Chip deselect/output floating	$\mathrm{t}_{\mathrm{CHz}}$	0	35	ns
Output disable/output floating	$\mathrm{t}_{\mathrm{oHz}}$	0	35	ns ${ }^{\text {a }}$

Note: The bus cannot be accessed in Battery Backup mode.
(1) Read cycle-1 timing wave form *1

(2) Read cycle-2 timing wave form *i. *2, and *4

RTC-64611/64613

(3) Read cycle 3 timing wave form $* 1$, and $* 4$

* 1. In read cycle, keep $\overline{\mathrm{WE}}$ "High".
* 2. The device is always selected in $\mathrm{CS}=\mathrm{V}_{\mathrm{LL}}$.
* 3. The address must be defined simultaneously with or before activation of CS.
* $4 . \overline{\mathrm{OE}}=\mathrm{V}_{1 \mathrm{~L}}$.
* 5. During read, read data varies as the contents of the register change.
(3) Write cycle

Note: During battery backup, the bus cannot be accessed.
(1) Write cycle 1 timing wave from (when the $\overline{O E}$ clock is used)

* 1. Write is executed while $\overline{\mathrm{CS}}=$ "Low" overlaps with $\overline{\mathrm{WE}}=$ "Low" ($\mathrm{t}_{\text {mr }}$).
* 2. The $t_{w k}$ is measured from the"High" transition of $\overline{C S}$ or \bar{W}, whichever is earlier, to the end of the write cycle.
* 3. During this period, the $1 / O$ terminal is in the the output state. Do not apply an input signal with opposite phase to the output.
(2) Write cycle 2 timing wave form (when $\overline{O E}=$ GND is fixed)

* 1. Write is executed while $\overline{C S}=$ "Low" is overlapped with $\overline{W E}=$ "Low" ($t_{w p}$).
* 2. The $t_{W R}$ is measured from the"High" transition of $\overline{C S}$ or $\overline{W E}$, whichever is earlier, to the end of the write cycle.
* 3. During this period, the I/O terminal is in the output state. Do not apply年解 input signal with opposite phase to the output.
* 4. When the "Low" transition of $\overline{\mathrm{CS}}$ occurs simultaneously with the "Low" transition of $\overline{\mathrm{WE}}$ or after the $\overline{\mathrm{WE}}$ transi* tion, output is kept at high impedance.
* 5. $\overline{O E}$ is always"Low."
* 6. Dout is in the same phase as data to be written in this write cycle.
* 7. Dout is the data to be read for the next address.
* 8. During this period, the I/O terminal goes to the output state when $\overline{\mathrm{CS}}$ is"Low." At this point, do not apply an input signal with opposite phase to the output.

1. Register table

	A_{3}	A_{2}	A_{1}	A_{0}	$\begin{gathered} b_{7} \\ \left(1 / O_{8}\right) \end{gathered}$	$\begin{gathered} b_{8} \\ \left(V / O_{7}\right) \end{gathered}$	$\begin{gathered} b_{5} \\ \left(1 / O_{5}\right) \end{gathered}$	$\begin{gathered} b_{4} \\ \left(1 / O_{5}\right) \end{gathered}$	$\begin{gathered} \mathrm{b}_{3} \\ \left(\mathrm{~V} / \mathrm{O}_{4}\right) \end{gathered}$	$\begin{gathered} \mathrm{b}_{2} \\ \left\{1 / \mathrm{O}_{3}\right\} \end{gathered}$	$\begin{gathered} \mathrm{b}_{1} \\ \left(1 / \mathrm{O}_{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{b}_{\mathrm{p}} \\ \left(1 / \mathrm{O}_{1}\right) \end{gathered}$	Register name
0	0	0	0	0	*	1 Hz	2 Hz	4 Hz	8 Hz	16 Hz	32 Hz	64 Hz	64 Hz Counter
1	0	0	0	1	*	c. s_{40}	$\mathrm{c} \cdot \mathrm{S}_{20}$	$\mathrm{C}-\mathrm{S}_{10}$	$\mathrm{C}_{5} \mathrm{~S}_{9}$	$\mathrm{C}-\mathrm{S}_{4}$	$\mathrm{c} \cdot \mathrm{s}_{2}$	$\mathrm{c}-\mathrm{s}_{1}$	Second digit counter
2	0	0	\dagger	0	*	c.-mi ${ }_{40}$	c-mi ${ }_{20}$	$c-\mathrm{mi}_{10}$	c -mis	c-mis	$\mathrm{c} \cdot \mathrm{mi}_{2}$	c-mi,	Minute digit counter
3	0	0	1	1	*	*	c - $\mathrm{h}_{\text {ze }}$	$\mathrm{c}-\mathrm{h}_{10}$	$\mathrm{c}^{\text {ch }} \mathrm{h}_{8}$	ch_{4}	$\mathrm{c}-\mathrm{h}_{2}$	$\mathrm{c}-\mathrm{h}_{1}$	Hour digit counter
4	0	1	0	0	*	*	*	*	*	C. w_{4}	C. w_{2}	$\mathrm{c}-\mathrm{w}_{1}$	Day of week digit counter
5	0	1	0	1	*	*	$\mathrm{c}-\mathrm{d}_{\mathrm{z}}$	c - d_{10}	$\mathrm{c}^{-} \cdot \mathrm{d}_{\mathrm{a}}$	c.d. ${ }_{4}$	$\mathrm{c}-\mathrm{d}_{2}$	c- d_{1}	Day digit counter
6	0	\dagger	1	0	*	*	*	$\mathrm{C}-\mathrm{mo}_{10}$	c -mo ${ }_{\text {g }}$	$\mathrm{C}-\mathrm{mo}_{4}$	$\mathrm{c}-\mathrm{mo}_{2}$	$\mathrm{C}-\mathrm{mo}_{1}$	Month digit counter
7	0	1	1	1	$c \cdot \mathrm{Y}_{80}$	$\mathrm{C}_{\mathrm{Y}}^{40}$	c- y_{20}	$\mathrm{C-}-\mathrm{y}_{19}$	$\mathrm{c}^{-y_{\text {a }}}$	$\mathrm{c}_{\mathrm{c}}^{4}$	$\mathrm{C}-y_{2}$	$\mathrm{c}-\mathrm{y}_{1}$	Year digit counter
8	1	0	0	0	ENB	1 Hz	2 Hz	4 Hz	8 Hz	16 Hz	32 Hz	64 Hz	64 Hz alarm
9	1	0	0	1	ENB	${ }^{2}-5_{49}$	a-5 ${ }_{20}$	a-s s_{10}	$\mathrm{a}^{-s_{s}}$	a^{-5}	$\mathrm{a}-\mathrm{s}_{2}$	a-s ${ }_{1}$	Second digit alarm
A	1	0	1	0	ENB	a. mi_{40}	$a-m i_{20}$	$\mathrm{a}-\mathrm{mi}_{10}$	$\mathrm{a}-\mathrm{mi} \mathrm{i}_{8}$	a-mis	$\mathrm{a} \cdot \mathrm{mi}_{2}$	$\mathrm{a}-\mathrm{mi}_{1}$	Minute digit alarm
B	1	0	1	1	ENB	*	$a-h_{20}$	$a-h_{10}$	$\mathrm{a}^{\mathrm{a}} \mathrm{h}_{6}$	a.his	$a-h_{2}$	$a \cdot h_{1}$	Hour digit alarm
C	1	1	0	0	ENB	*	*	*	*	$a-w_{4}$	a- W_{2}	a- w_{1}	Day of week cigit alarm
D	1	1	0	1	ENB	*	a-d d_{20}	a- d_{10}	a-ds	$\mathrm{a} \cdot \mathrm{d}_{4}$	a-d d_{2}	$a-d_{1}$	Day digit alarm
E	1	1	1	0	CF	*	*	CIE	AIE	*	*	AF	Control register A -
F	1	1	1	1	RAM7	RAM6	RAM5	RAM4	TEST	$\begin{aligned} & 30 \mathrm{sec} \\ & \mathrm{ADJ} \\ & \hline \end{aligned}$	RESET	$\left\lvert\, \frac{S \cdot \text { START }}{/ \text { STOP }}\right.$	Control register E

2. Note the following:

(1) In positive logic, " H " of the data bus corresponds to " l " in the register.
(2) Do not set date out of the clock, otherwise, a counting error may occur.
(3) When the power is turned on (before initializing) the state of the bits is undefined. Write the registers to set the values.

3. Function of the register bits

Blt name	Functions									
* Mark	Not used and invalid for write. In the read mode, data equais "0".									
64 Hz counter	Read-dedicated bit (inavlid for write). Date is read in binary code.									
64 Hz alarm	Data appears in binary code.									
Second digit-year digit	BCD code									
Ten o'clock digit	Only for the 24-hour system.									
Day of weak digit	Encode the days of the week.	Example:	Data	0	1	2	3	4	5	6
			Day of week	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
CF (Carry Flag)	Mainly used to read the time. This bit is set to "1" in any of the following conditions: (1) A carry of the second digit has occurred. (2) A 64 Hz carry and 64 Hz register read overlap. In any condition other than the aboves, the bit can be cleared by writing $\mathrm{CF}=0$.									
CIE (Carry Interrupt Enable)	When this bit is set to " F ", CF bit $=1$ and $\overline{\mathrm{RQ}}$ terminal $=\mathrm{L}$ when the carry conditions are met. When $\mathrm{CF}=\mathrm{O}$ is written, $\overline{\operatorname{RQ}}$ terminal = OPEN (cleared). When this bit is set to "O", $\overline{\operatorname{RQ}}$ terminal remains open regardless of the value of the CF bit.									
AIE (Alarm Interrupt Enable)	When this bit is set to " 1 ", AF bit $=1$ and $\overline{\mathrm{T} R \mathrm{Q}}$ termina! $=\mathrm{L}$ when the alarm conditions are met. When $\mathrm{AF}=0$ is written, $\overline{\operatorname{IRQ}}$ terminal $=$ OPEN (cleared). When this bit is set to " 0 ", $\overline{\mathrm{RQ}}$ terminal remains open regardless of the value of the CF bit.									
AF (Alarm Flag)	When the time and calendar match the set alarm time, this bit is set to " 1 ". In any other condition, this bit can be cleared by writing $A F=0$.									
RAM7 to 4	May be used as RAM or flag.									
TEST	This bit is used by us to test the system. The user must set this bit to 0 (TEST $=0$).									
ADJ	In ADJ $=1$, a 30 -second correction is executed. Simultaneously, the dividing circuit is reset.									
RESET	In RESET $=1$, the dividing circuit (less than 1 second counter) is reset.									
S-START// $\overline{\text { STOP }}$	This bit is used in combination with H-START/STOP terminal. Only when H-START/STOP terminal $=\mathrm{L}$. and S-START/ STOP bit=0, counting stops. Otherwise, the time control counting by using the S.START/STOP bit, connect the H START/STOP terminal to GND ("L").									

4. Setting the carry interrupt mode

CIE (Carry Interrupt Enable)	Condltion	CF (Carry Flag)	IRQ terminal
1	A carry has occurred from the second digit, or a 64 Hz carry and a 64 Hz register read overlap.	$0 \rightarrow 1$ (The flag is set)	OPEN $\rightarrow \mathrm{L}$
0	No carry has occurred from the second digit, or a 64 Hz carry and a 64 Hz register read do not overlap.	$\mathrm{AF}=0$ is written. (The flag is reset)	$\mathrm{L} \rightarrow$ OPEN
1	OPEN (Unchanged)		
0			

5. Setting the alarm interrupt mode.

AIE (Carry Interrupt Enable)	Condltion	AF (Alarm Flag)	$\overline{\bar{R} \bar{Q}}$ terminal
1	The set alarm time matches the time and calendar.	$0 \rightarrow 1$ (The flag is set)	OPEN \rightarrow L
0			OPEN (Unchanged)
1	The set alarm time does not match the time and caiendar.	$A F=0$ is written. (The flag is rset)	$L \rightarrow$ OPEN
0			OPEN (Unchanged)

6. Setting the carry interrupt mode and its reset timing

7. Setting the alarm interrupt mode and its reset timing

Register explanation

1. 64 Hz counter

(1) The 64 Hz counter can read a value of $64-1 \mathrm{~Hz}$ (data in binary code) of the dividing circuit (read only).
(2) When a carry from the 128 Hz stage (internal counter) and read of this register are overlapped, CF (b7 of the control register A) is $6 e t$ to " 1 " In this case, read this register again according to the procedure shown in the flowchart below. (A carry takes place once every approximately 8 ms in the $125 \mu \mathrm{~s}$ period.)
(3) This register is reset using RESET or 30 -second ADJ.

2. Second - year counters

(1) These registers set and count the time and caiender.
(2) Each register is in BCD code.

Example: ($\left.*, \mathrm{~S}_{40}, \mathrm{~S}_{20}, \mathrm{~S}_{10}, \mathrm{~S}_{8}, \mathrm{~S}_{4}, \mathrm{~S}_{2}, \mathrm{~S}_{1}\right)=(0,1,0,1,1,0,0,1) \rightarrow 59$ seconds
(3) Encode the cays of the week for use.

Example:

data	0	1	2	3	4	5	6
Day of week	Sun.	Mon.	Tue.	Wed.	Thur.	Fri.	Sat.

(4) The time register uses the 24-hour system. The year register uses the wegtern calendar. Leap years are automaticalfy recognized. (Note: A year whose lower two digits are a multiple of four is recognized as a leap year.)
(5) A carry is generated once each second in the 125μ s period.

Data read during a carry operation (during $C F=1$) is not guaranteed. (See the time read procedure on page 14.)
(6) The second and minute registers are not affected by RESET,
(7) The hour - year registers are not affected by ADJ and RESET.
3. 64 Hz and second - year alarm registers
(1) These registers set the alarm time (the data code is 64 Hz ; see section "second-year registers).
(2) When the alarm register with its ENB set to "1" matches the counter,AF is set to " 1 " When CIE bit (control register $\mathrm{A}-\mathrm{b} 3$) has been set to " 1 ", $\overline{\mathrm{IR}} \mathrm{C}$ terminal is set to "Low "level.
4. Control register A

\mathbf{b}_{7}	\mathbf{b}_{6}	\mathbf{b}_{5}	\mathbf{b}_{4}	\mathbf{b}_{3}	\mathbf{b}_{2}	\mathbf{b}_{1}	\mathbf{b}_{0}
CF	$*$	$*$	CIE	AIE	$*$	$*$	AF

(1) This register processes flags which come in ansynchronously from the clock circuit.
(2) Note the following:

Do not use the Set Bit and Clear Bit instructions to "read-modify-write" because a flag may be set after read.
(1) CF (Carry Flag) (b7)
(1) Fiag occurrence

This bit is set to " 1 "in hardware when one of the following conditions is met:

* When a carry from the second digit has occurred.
* When a 64 Hz carry overlaps with read access to the 64 Hz register (see section ${ }^{6} 64 \mathrm{~Hz}$ register/counter).

Carry flag	Function
0	After this bit is reset to " 0 ",there was no read at the time of the second digit carry and the 64 Hz carry
1	After this bit is reset to " 0 ",there was a read at the time of the second digit carry or the 64 Hz carry

(2) Pesetting

Resetting can be accomplished by writing " 0 "to the CF bit during any period except the carry period.
(3) Note the following:

This bit will not accept a write of "1."
(1) CIE (Carry Interrupt Enable) (bi)
(1) When this bit is set to " 1 ", the CF is set when the carry condition is met, and the $\overline{\operatorname{RQQ}}$ terminal goes "low".

When CF is reset the $\overline{\mathrm{IRQ}}$ terminal returns to the "High"level.
(2) Relation between CIE/CF bits and IRO terminal.

CIE	CF	\| $\overline{\text { ROW }}$ terminal *	Remarks
1	$0 \rightarrow 1$ (The flag is set)	High \rightarrow Low	When the flag is set, $\overline{\operatorname{RoQ}}$ terminal goes "Low". When the flag is reset, $\overline{\mathrm{RQ}}$ terminal is also reset.
1	$1 \rightarrow 0$ (The flag is reset)	Low \rightarrow High	
0	0 or 1	High (No changes)	

* $\overline{\mathrm{RQ}}$ terminal has an open drain output. Therefore, it must be forced up.
(3) AIE (Alarm Interrupt Enable) (b_{3}).
(1) When this bit is set to " 1 ", the AF is set when the alarm condition is met and the $\overline{\mathrm{RQ}}$ terminal goes "Low". When the AF is reset, the $\overline{\mathrm{RQ}}$ terminal returns to the "High" levet.
(2) Relation between the AIE/AF bits and the $\overline{\mathrm{RQ}}$ terminal.

AIE	AF	$\overline{\mathrm{IRO}}$ terminal	Remarks
1	$0 \rightarrow 1$ (The flag is set)	Hight \rightarrow Low	When the flag is set, $\overline{\operatorname{RQ}}$ terminal goes "Low". When the flag is reset, $\overline{\mathrm{RQ}}$ terminal is also reset.
1	$1 \rightarrow 0$ (The flag is reset)	Low \rightarrow High	
0	0 or 1	High (No chianges)	

(4) AF (Alarm Flag) $\left(b_{0}\right)$.
(1) Flag occurrence

This bit set to "1" in hardware when one of the following condition is met: When the set time of the alarm register (only the register with ENB="1") matches the time and calendar of the counter register.

AF	
0	After the bit is reset to " 0 ", the alarm register does not match the clock and counter.
1	The alarm register matches the clock and counter (only for the register with ENB set).

(2) Resetting

Reset can be conducted by writing " 0 " to the AF bit during any period except the alarm time.
(3) Note the following:

This bit will not accept write of "1".

5. Control register B

\mathbf{b}_{7}	\mathbf{b}_{8}	\mathbf{b}_{5}	\mathbf{b}_{4}	\mathbf{b}_{3}	\mathbf{b}_{2}	\mathbf{b}_{1}	$\mathbf{b}_{\mathbf{0}}$
RAM $_{7}$	RAM $_{4}$	RAM $_{B}$	RAM $_{4}$	TEST	ADJ	Reset	S•START $/$ STOP

Note: User functions in the state TEST $=1 "$ are not guaranteed. Use the system in the state TEST $=$ " 0 ".
(I) RAM $7,6,5,4\left(b_{7}, 6,5,4\right)$.

The bit can be used as RAM or flags by writting " $1^{n \prime}$ or " 0 ".
They cannot be used as RAM if TEST $={ }^{\prime \prime} 1 "$.
(2) TEST $\left(b_{3}\right)$

This bit is used by us to test the system. Use the system with TEST set to "0".
If $T E S T=" 1$ ", user functions are not guaranteed.
(3) 30-second ADJ (30-second ADJUST) (b_{2})
(1) When this bit is set to " 1 ", the 30 -second correction is executed. At this time, 64 Hz counter (dividing circuit) is also reset. * Before 30 seconds, this bit has " 00 " seconds without a carry of the minute digit.

* After 30 seconds, this bit has " 00 " second with a carry of the minute digit.
(2) Reset
" 1 " is held for 250μ s after this bit is set to " 1 ". This bit then automatically returns to " 0 ".

RTC-64611/64613
(3) Note the following:

Conduct the next writing, only after this bit returns to" 0 " (is reset), Writing" 0 " to this bit is invalid.
(4) RESET (b1)
(1) When this bit is set to"1", only the dividing circuit is initialized.
(2) Reset
" 1 " is held for 250μ s after this bit is set to " t ". The bit then automatically returns to " 0 ".

(3) Note the following:

Conduct the next writing, only after this bit returns to"0" (is reset),
Writing" $O^{\prime \prime}$ to this bit is invalid,
(5) S.START/STOP (Software START/STOP) (b ${ }^{6}$),

Use this function in combination with the H.START/STOP terminal.

H•START/STOP terminal	H•START/STOP bit	Clock state
L	0	Stopped
L	1	Active
H	0	Active
H	1	Active

Operation procedure

1. Initialization when power on.

Initialization is needed only when the power is initially turned on. To return from battery backup mode, follow the specifications for low supply voltage data hold wave form.

Note: This module has no terminal for resetting registers.
Therefore, after the power is turned on, all registers must reinitialized. Before initialization of the registers is completed, follow the instructions below:
(1) Undefined $\overline{\mathrm{R} Q}$

As all registers are undefined when the power is turn on, the interruptioft from a carry or alarm may occur.
This may cause an interrupt from a carry or may cause an alarm to occur. In the system software,to prevent such error, do not accept any interrupts before all registers are completely initialized.
(2) Undefined calender clock operation

When the power is turned on, the TEST bit is undefined. With this bit $=$ " 1 " the system operates in test mode, then begins normal operation. Set this to" 0 " before using the clock function.
(3) Undefined countar START/STOP

When the power is turned on, the S.START/STOP bit is undefined.
Starting and stopping of the counter is controlled by the OR logic of this bit and the external terminal H.START/STOP. Set this bit in accordance with the control method.
2. Time setting procedure
(1) To reset the dividing circuit and then set the counter
(2) To set the second = year counter

Section (1) indicates the method of stopping the clock and setting the time. This method is effective when the entire calendar clock is exchanged. With this method, programming is easy.
Section (2) indicates the method for setting the time while keeping the clock operating. The method is effective when a part of the calendar clock is exchanged (for example, only data on the second or time is exchanged). The carry flag is used to check the write state. When a carry is generated during write, the writen data is automatically updated and an error occurs in the set data. Therefore, when the carry flag has been set to" 1 ", rewriting must be done.
The interrupt function can be used to check the carry flag.
Note:A carry of second to year digits is executed once per second in the $125 \mu \mathrm{~s}$ period, Therefore, when a carry is detected in write operation, the writing can be done after $125 \mu \mathrm{~s}$ from the carry starts. The write must be completed before the next carry starts.

RTC-64611/64613

3. Time reading procedure
(1) Interrupt is not used

(2) Interrupt is used.

When a carry occurs during time read, the correct time is unavailabl. In this case, the read must be repeated. The method in (1) does not use an interrupt. The method in (2) uses an interrupt ($\overline{\mathbb{R Q}}$ terminal). To simplify the program, the method in (I) is generally used.
Note: 1 1 . The second - year digit carry is executed once per second during the 125μ s period. When a carry is detected in the read operation, the reading can be done after $125 \mu s$ from carrystart. Now a normal read is achieved. The read must be completed before the new carry starts.
2). The 64 Hz counter is carried once each approximately 8 msec , in the $125 \mu \mathrm{~s}$ period

4. Alarm function

To use interrupt, the AIE bit (b3 of the contral register A) must be " 1 ".

The must be reset, considering that the flag was set during the alarm time setting operation (Clear AF by writing " O " to bO of control register A.) Note: Set CF to "1" not to be cleared.

The alarm can be generated for any of the 64 Hz , second, minute, hour, day of the week, or in any combination of them. For the register to which you want to generate alarm, write " 1 " to ENB bit of b7 and set the alarm time in the low-order bits. For other registers, write" O " to ENB bit of b7.
When the clock matches the alarm time, the AF bit (bo of the control register A) is set to"1". Alarm detection may be recognized byreading this bit, however, an interrupt is commonly used. When AIF (b3 of the control register A) has been set to"1", the $\overline{\mathrm{RRQ}}$ terminal goes"Low" when an alarm occurs. Thus, an alarm can be detected.
$A F$ is always set when time register and alarm register match. That is, when the AF bit is reset by writing "O", AF is immediately set again after write. The programmer must be aware of this point.

5. Application as a long term timer

This module contains the counter start/stop function. This function enables the module to be used as a long-term timer. In this application, the timer uses the normal calendar clock function.
This requires setting of the month and year, even if they are not required. For example, When the timer is used with the month setting undefined, the month may end on any day from 28th to 31st. The timger with not indicate when the next month starts.

System configuration sample

Reference data

(I) Example of frequency/temperature characteristics
(c)

How to determine frequency stability (clock error)
(1) The frequency temperature characteristics can be approximated by the expression below
$\Delta \mathrm{f}_{\mathrm{T}}(\mathrm{ppm})=\mathrm{a}\left(\theta_{\mathrm{T}}-\theta_{\mathrm{X}}\right)^{2}$
$\left[\begin{array}{ll}\Delta f_{T}(\mathrm{ppm}) & : \text { Frequency deviation at any temperature } \\ \mathrm{a}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}{ }^{2}\right) & : \text { Secondary temperature coefficient } \\ & \left(-0.035 \pm 0.005 \mathrm{ppm} /{ }^{\circ} \mathrm{C}^{2}\right) \\ \theta_{\mathrm{T}}\left({ }^{\circ} \mathrm{C}\right) & : \text { Peas temperature }\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right) \\ \theta_{\mathrm{x}}\left({ }^{\circ} \mathrm{C}\right) & \text { Any temperature }\end{array}\right]$
(2) To determine the clack error (accuracy), add the frequency telerances and woltage characteristic to the above.

$$
\Delta f / f(\mathrm{ppm})=\Delta f / \mathrm{f}_{0}+\Delta \mathrm{f} / \mathrm{f}_{\mathrm{T}}+\Delta \mathrm{fv}
$$

$\left[\begin{array}{ll}\Delta f / f(p p m) & : \text { Clock accuracy (frequency stability) } \\ & \text { at any temperature and voltage } \\ \Delta f / f_{0}(p p m) & : \text { Frequency tolerances } \\ \Delta f_{T}(p p m) & \text { : Frequency deviation at any temperature } \\ \Delta f_{V}(p o m) & : \text { Frequency deviation at any voltage }\end{array}\right]$
(3) How to determine the day difference (second/day). Daily diference (second) $=\Delta t / f \times 10^{-8} \times 86,400$ (second) The daily difference is approximately one second per day. at $\Delta \mathrm{f} / \mathrm{f}$ is 11.574 ppm .

Note: The data shows the typicaf values of a sample lot.

For the rated values, see the specifications (P3-4)
(3) Example of the current consumption/ voltage characterisitcs

Package size

1. RTC-64611

- Marking layout

Note: The indication above details the markings and outline their positions.
But does not specify the details of the type faces and sizes of characters and their positions.

RTC-64611/64613

Precautions

(1) This module uses a C-MOS IC for low power consumption. This following precautions must be taken to ensure that it is not damaged.
(1) Static electricity

This unit have circuits to protect it from damage caused by static electricity, but exposure to excessive static electricity could damage the IC. Please use conductive packaging or shipping containers. Also, please use grounded soldering irons, measuring circuits, etc. that do not leak.
(2) Noise

Exposing the power source or input/output terminals to excessive noise could cause malfunctioning or a tatch up phenomenon. To ensure stable operation, please attach a by pass capacitor (recommend ceramic type) of at least 0.1 $\mu \mathrm{F}$ as close as possible to the module's power-source terminal (between $\mathrm{V}_{\mathrm{DD}}-\mathrm{GND}$). Please do not place the module near anything that emits high nois.
(3) Voltage level of input terminals

Please make the input terminal voltage level setting as close to the V_{D}-GND potential as possible, since a mid-level potential setting will cause an increase in current consumption, a decrease in the noise margin, and a deterioration of devices.
(4) Unused input terminals [with exception of (NC) terminal)

Because the input impedance of input terminals is extremely high, use in the open state may cause malfunctioning due to unset potential or noise. Therefore, unused input terminals should be either pulled up or down. Further, the NC terminal should be grounded in order to avoid noise.
(2) Packaging precautions
(1) Soldering temperature conditions
I. RTC-64611

Since solder is used on the quartz oscillator, if the temperature inside the package exceeds $150^{\circ} \mathrm{C}$, the quartz could deteriorate or be damaged. (Solder conditions: $260^{\circ} \mathrm{C}$ or less $\times 10$ seconds or less (lead portion)). Either use a solder dip tank or solder by hand. Please refrain from using paper, reflow, infrared, etc.
II. ATC-64613

Be certain to check the mounting temperature before mounting the unit, as the quartz oscillator could deteriorate and be damaged if the temperature inside the package exceeds $260^{\circ} \mathrm{C}$. Also, please check the packaging temperature before using RTC-64613 when conditions change.
(Solder conditions: $260^{\circ} \mathrm{C}$ or tess $\times 10$ seconds or less $\times 2$ times or fewer, or $230^{\circ} \mathrm{C}$ or less $\times 3$ minutes or less)
Soldering conditions for SMD products

(2) Mounting machine

It is possible to use an all-purpose mounting machine, but please be sure to check the machine's suitability at your company before using it, as physical shocks during mounting could lead to damage of the internal quartz crystal. When there is a change in conditions, please use the machine after making the above-mentioned check.
(3) Ultrasonic cleaning

Depending on the conditions, ultrasonic cleaning coutd cause resonance damage to the quartz crystal.
Since we are unable to determine the usage conditions (type of cleaning unit, power, time, conditions inside the bath, etc.) at our company, we cannot guarantee the safety of this unit when it is cleaned in an ultrasound cleaner.
(4) Mounting direction

This module will be damaged if it is mounted backwards, so please make sure that it is packaged in the correct position.
(5) Leak between terminals

Since turning on the unit when it is dirty or covered with condensation could lead to leaks between terminals, please clean and dry the module before turning it on.

Application Manual for RTC-64611/64613

Issued on Nov. 20, 1990

SEIKO EPSON CORPORATION

QUARTZ DEvICE dIVISION OD Sales Dept. 8548 Nakaminowa, Minowa-machi,
Kamiina-gun, Nagano-ken, 399-46 JAPAN Phone: (0265)79-4755 FAX: (0265)79-9492

* Please direct inquiries to EPSON AMERICA, INC.

The manufacturer has been approved by the Rellability Center for Electronic Components of Japan (RCJ).

