

SYNCHRONOUS 4-BIT COUNTER | \$54160 N74160

S54160 N74160 S54161 N74161 S54162 N74162 S54163 N74163

\$54160-B,F,W • \$54161-B,F,W • \$54162-B,F,W • \$54163-B,F,W N74160-B,F • N74161-B,F • N74162-B,F • N74163-B,F

DIGITAL 54/74 TTL SERIES

DESCRIPTION

These synchronous, presettable counters feature an internal carry look-ahead for application in high-speed counting schemes. The S54160, S54162, N74160, and N74162 are decade counters and the S54161, S54163, N74161, and N74163 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed by the count-enable inputs and internal gating. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple clock) counters. A buffered clock input triggers the four J-K mester-slave flip-flops on the rising (positive-going) edge of the clock input waveform.

All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design. A full fan-out to ten normalized Series 54/74 loads is available from each of the outputs in the low-level state. A fan-out to 20 normalized Series 54/74 loads is provided in the high-level state to facilitate connection of unused inputs and power dissipation is typically 325 milliwatts.

PIN CONFIGURATION

LOGIC DIAGRAM

LOGIC DIAGRAM (Cont'd)

RECOMMENDED OPERATING CONDITIONS

	S54160, S54161 S54162, S54163		N74160, N74161 N74162, N74163			UNIT	
	MIN	NOM	MAX	MIN	NOM	MAX	Olvi
Supply Voltage V _{CC}	4.5	5	5.5	4.75	5	5.25	١ ١
Normalized Fan-Out from each Output, N: High logic level			20	1		20	ļ
Low logic level			10			10	
Input Clock Frequency, f _{clock}	0		25	0		25	МН
Nidth of Clock Pulse, twiclock)	25			25			١,
Nidth of Clear Pulse, tw(clear)	20		Į.	20			
Setup Time, t _{setup} : Data Inputs, A,B,C,D	15		ľ	15			
Enable P	20		l	20			1
Load	15		Ì	15			
Clear	20		1	20			
Hold Time at any Input, thold	0		1	0			
Operating Free-Air Temperature, T _A	-55	25	125	0	25	70	٥

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise specified)

	PARAMETER	TEST CONDITIONS*		S54160,S54161 S54162,S54163			N74160,N74161 N74162,N74163			
	ranameren s	1231 00	NOTTIONS	MIN	TYP**	MAX	MIN	TYP**	MAX	UNIT
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage	VCC = MAX,			1	0.8			0.8	l v
vi_	Input clamp voltage	VCC = MAX,	I _I = -12mA			-1.5			-1.5	V
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8V,	V _{IH} = 2V, I _{OH} = -800μA	2.4	İ		2.4			v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8V,	V _{IH} = 2V, I _{OL} = 16mA			0.4			0.4	V
Ŋ	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 5.5V		İ	1			1	mA
ΙΗ	High-level Clock or enable T input current Other inputs	V _{CC} = MAX,	V _I = 2.4V			80 40			80 40	μА
IIL	Low-level Clock or enable T input current Other inputs	V _{CC} = MAX,	V ₁ = 0.4V			-3.2 -1.6			-3.2 -1.6	mA
los	Short-circuit output current †	V _{CC} = MAX		-20		-57	-18]	-57	mA
	Supply current, all outputs high	V _{CC} = MAX,	See Note 3		59	85	1	59	94	mA.
CCL	Supply current, all outputs low	V _{CC} = MAX,	See Note 4		63	91		63	101	mA.

DIGITAL 54/74 TTL SERIES = \$54/N74160, \$54/N74161, \$54/N74162, \$54/N74163

SWITCHING CHARACTERISTICS, $V_{CC} = 5V$, $T_A = 25^{\circ}C$, N = 10

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}	Maximum input clock frequency		25	32	-	MHz
^t PLH	Propagation delay time, low-to-high-level carry output from clock	C _L = 15pF, R _L = 400Ω		23	35	1
^t PHL	Propagation delay time, high-to-low-level carry output from clock			23	35	ns
^t PLH	Propagation delay time, low-to-high-level Q output from clock			13	20	
^t PHL	Propagation delay time, high-to-low-level Ω output from clock			15	23	ns
^t PLH	Propagation delay time, low-to-high-level carry output from enable T			8	13	
^I PHL	Propagation delay time, high-to-low-level carry output from enable T			10	15	n
^t PHL	Propagation delay time, high-to-low-level Q output from clear			20	30	n

^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable

NOTES:

- 3. I_{CCH} is measured with the load input high, then again with the load input low, with all other inputs high and all outputs open.
- 4. ICCL is measured with the clock input high, then again with the clock input low, with all other inputs low and all outputs open.

TYPICAL CLEAR, PRESET, COUNT, AND INHIBIT SEQUENCES FOR 54161, 74161, 54163, 74163 SYNCHRONOUS BINARY COUNTERS

^{**} All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

† Not more than one output should be shorted at a time.

TYPICAL CLEAR, PRESET, COUNT, AND INHIBIT SEQUENCES FOR 54160, 54162, 74160, 74162 SYNCHRONOUS BINARY COUNTERS

PARAMETER MEASUREMENT INFORMATION

NOTES:

- A. The input pulses are supplied by a generator having the following characteristics: $t_r \le 10 ns$; $t_f \le 10 ns$, $PRR \le 1$ MHz, duty cycle $\le 50\%$,
- Z_{out} ≈ 50Ω. Very PRR to measure f_{max}.

 B. Outputs Q_D and carry are tested at t_{n+10} for the S54160, S54162, N74160, and N74162, and at t_{n+16} for the S64161, S54163, N74161, and N74163, where t_n is the bit time when all outputs are low.

NOTES:

- A. The input pulses are supplied by a generator having the following characteristics: $t_{\rm p} \le 10 {\rm ns}$; $t_{\rm f} \le 10 {\rm ns}$; PRR ≤ 1 MHz, duty cycle $\le 50 {\rm %}$;
- $\rm Z_{out} \approx 50\Omega.$ B. Enable P and enable T setup times are measured at t_n = 0.

TYPICAL APPLICATIONS

