GATED FULL ADDER | \$5480 N7480 \$5480-A.F.W . N7480-A.F # DIGITAL 54/74 TTL SERIES #### DESCRIPTION The S5480/N7480 is a single-bit, high-speed, binary full adder with gated complementary inputs, complementary sum (Σ and $\overline{\Sigma}$) outputs and inverted carry output. Designed for medium- and high-speed, multiple-bit, parallel-add/serial-carry applications, the circuit (see schematic diagram) utilizes diode-transistor logic (DTL) for the gated inputs, and high-speed, high-fan-out transistortransistor logic (TTL) for the sum and carry outputs. The circuit is entirely compatible with both DTL and TTL logic families. The implementation of a single-inversion, high-speed, Darlingtonconnected serial-carry circuit minimizes the necessity for extensive "look-ahead" and carry-cascading circuits. The power dissipation has been maintained considerably below that attainable with equivalent standard integrated circuits connected to perform fulladder functions. TRUTH TABLE (See Notes 1,2, and 3) | _ | T _ | 1 | | = | - | |-------|-----|-----|------------------|---|---| | c_n | B | l A | C _{n+1} | Σ | Σ | | 0 | 0 | 0 | 1 | 1 | 0 | | 0 | 0 | 1 | 1 | 0 | 1 | | 0 | 1 | 0 | 1 | 0 | 1 | | 0 | 1 | 1 | 0 | 1 | 0 | | 1 | 0 | 0 | 1 | 0 | 1 | | 1 | 0 | 1 | 0 | 1 | 0 | | 1 | 1 | 0 | 0 | 1 | 0 | | 1 | 1 | 1 | 0 | 0 | 1 | #### NOTES: - 1. $A = \overline{A^{\bullet} \cdot A_{c}}$, $B = \overline{B^{\bullet} \cdot B_{c}}$ where $A^{\bullet} = \overline{A_{1} \cdot A_{2}}$, $B^{\bullet} = \overline{B_{1} \cdot B_{2}}$. 2. When A^{\bullet} or B^{\bullet} are used as inputs, A_{1} and A_{2} or B_{1} and B_{2} - respectively, must be connected to GND. #### PIN CONFIGURATIONS - When A_1 and A_2 or B_1 and B_2 are used as inputs, A^\star or B^\star respectively, must be open or used to perform Dot-OR logic. The voltages are with respect to ground terminal. - Input signals must be zero or positive with respect to network ground terminal. ### SCHEMATIC DIAGRAM # **RECOMMENDED OPERATING CONDITIONS** | | MIN | NOM | MAX | UNIT | |--|------|-----|------|-------------| | Supply Voltage V _{CC} : S5480 Circuits | 4.5 | 5 | 5.25 | > | | N7480 Circuits | 4.75 | 5 | 5.25 | | | Normalized Fan-Out from Outputs: C _n +1, N | i | \ | 5 | 1 | | Σ or $\overline{\Sigma}$, N | | ĺ | 10 | | | A* or B*, N | | | 3 | | | Operating Free-Air Temperature Range, TA: S5480 Circuits | -55 | 25 | 125 | °C | | N7480 Circuits | 0 | 25 | 70 | °c | # ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted): | PARAMETER | | TEST CONDITIONS* | | | MIN | TYP** | MAX | UNIT | |---------------------|---|--|--|----------------|------------|----------|------------|------------------| | V _{in(1)} | Logical 1 input voltage | V _{CC} = MIN | | | 2 | | | v | | V _{in(0)} | Logical 0 input voltage | V _{CC} - MIN | | | | | 8.0 | \ v | | V _{out(1)} | Logical 1 output voltage | V _{CC} = MIN | | | 2.4 | 3.5 | | v | | $V_{out(0)}$ | Logical 0 output voltage | V _{CC} = MIN | | | | 0.22 | 0.4 | (v | | lin(0) | Logical 0 level input current at A_1 , A_2 , B_1 , B_2 , A_c or B_c | V _{CC} = MAX, | V _{in} = 0.4V | | | | -1.6 | mA | | lin(0) | Logical 0 level input
current at A* or B* | V _{CC} = MAX, | $V_{in} = 0.4V$ | | | | -2.6 | mA | | lin(0) | Logical 0 level input
current at C _n | V _{CC} = MAX, | V _{in} = 0.4V | | | | -8 | mA | | ¹ in(1) | Logical 1 level input current at A_1 , A_2 , B_1 , B_2 , A_c or B_c | V _{CC} = MAX,
V _{CC} = MAX | V _{in} = 2.4V
V _{in} = 5.5V | | | | 15
1 | μA
mA | | lin(1) | Logical 1 level input current at Cn | V _{CC} = MAX,
V _{CC} = MAX, | V _{in} = 2.4V
V _{in} = 5.5V | | | | 200
1 | μA
m A | | los | Short circuit output current at Σ or Σ † | V _{CC} = MAX, | | S5480
N7480 | -20
-18 | | -57
-57 | mA
mA | | los | Short circuit output current at Cn+1† | V _{CC} = MAX, | | S5480
N7480 | -20
-18 | | -70
-70 | mA
mA | | ^I cc | Supply current | V _{CC} = MAX, | | S5480
N7480 | | 21
21 | 31
35 | mA
mA | # SWITCHING CHARACTERISTICS, VCC = 5V, TA = 25°C | PARAMETER¶ | FROM | то
оитрит | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |------------------|----------------|---------------------|------------------------|-------------------|-----|-----|-----|------| | t _{pd1} | | | C ₁ = 15pF, | $R_1 = 780\Omega$ | | 13 | 17 | ns | | tpd0 | Cn | C _{n+1} | C ₁ = 15pF, | $R_1 = 780\Omega$ | | 8 | 12 | ns | | ^t pd1 | D | <u>c</u> | C = 15pF, | RL = 780Ω | | 18 | 25 | ns | | tpd0 | ВС | C _{n+1} | CL = 15pF, | R | | 38 | 55 | ns | | ^t pd1 | 100 | 24 | C ₁ = 15pF, | $R_L = 400\Omega$ | | 52 | 70 | ns | | ^t pd0 | Ac | Σ | CL = 15pF, | R = 400Ω | | 62 | 80 | ns | | ^t pd1 | 1 62 | - | C = 15pF, | $R_1 = 400\Omega$ | | 38 | 55 | ns | | tpd0 | BC | $\overline{\Sigma}$ | C = 15pF, | $R_L = 400\Omega$ | | 56 | 75 | ns | | ^t pd1 | 4.20 | 1000 | C = 15pF | | | 48 | 65 | ns | | ^t pd0 | A ₁ | A* | C = 15pF | | | 17 | 25 | ns | | tpd1 | | | C = 15pF | | | 48 | 65 | ns | | tpd0 | B ₁ | В* | C = 15pF | | | 17 | 25 | ns | ^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. ^{**} All typical values are at V_{CC}= 5V, T_A = 25°C f Not more than one output should be shorted at a time. $[\]P$ t_{pd1} is propagation delay time to logical 1 level. t_{pd0} is propagation delay time to logical 0 level.