Product Features **Block Diagram** SDATA . Œ - 10 output buffers for high clock fanout applications - Each output can be internally disabled for EMI and power consumption reduction. - Separate power supply for each group of 2 clock outputs for mixed voltage application. - < 250ps skew between output clocks.</p> - 28-pin SSOP package for minimum board space - Single output Tristate pin for testability # SDRAM(0:1) SDRAM(2:3) SDRAM4 FIN SDRAM5 VDD SDRAM(6:7) SDRAM(8:9) ## **Product Description** The device is a high fanout system clock distributor. Its primary application is to create the large quantity of clocks needed to support a wide range of clock loads that are referenced to a single existing clock. Loads of up to 30 pF are supported. Primary application of this component is where long traces are used to transport clocks from their generating devices to their loads. The creation of EMI and the degradation of waveform rise and fall times is greatly reduced by running a single reference clock trace to this device and then using it to regenerate the clock that drives shorter traces by using the SC660 to generate the clocks at the target devices EMI is therefore minimized and board real estate is saved. ## **Pin Configuration** | | | | 1 | |--------|----|----|----------| | VDDB | 1 | 28 | □ VDDB | | SDRAM0 | 2 | 27 | ☐ SDRAM9 | | SDRAM1 | 3 | 26 | ☐ SDRAM8 | | VSS | 4 | 25 | □ vss | | VDDB [| 5 | 24 | ☐ VDDB | | SDRAM2 | 6 | 23 | ☐ SDRAM7 | | SDRAM3 | 7 | 22 | ☐ SDRAM6 | | VSS 🗆 | 8 | 21 | □ vss | | FIN [| 9 | 20 | □ OE | | VDDB [| 10 | 19 | □ VDDB | | SDRAM4 | 11 | 18 | ☐ SDRAM5 | | VSS | 12 | 17 | □ vss | | VDD [| 13 | 16 | □ vss | | SDATA | 14 | 15 | SCLOCK | | | | | | **Pin Description** | | STORIO STATE OF THE TH | | | | | | | |-----------------------------------|--|------|-----|------|--|--|--| | PIN | Pin | PWR | I/O | TYPE | Description | | | | No. | Name | | | | | | | | 9 | FIN | - | _ | PAD | This pin is connected to the input reference clock. This clock must be in the range of 10.0 to 100.0 Mhz. | | | | 2,3,6,7,1
1,18,22,2
3,26,27 | SDRAM(0:9) | VDDB | 0 | BUF1 | Low skew output clocks. | | | | 20 | OE | - | _ | PAD | Buffer Output Enable pin. This pin is low it is used to place all output clocks (CLK1:10) in a tri state condition. This feature facilitates in production board level testing to be easily implemented for the clocks that this device produces. Has internal pull-up resistor. | | | | 14 | SDATA | VDD | I/O | PAD | Serial Data for SMBus control interface. This pin receives data streams from the SMBus bus and outputs an acknowledge for valid data. | | | | 15 | SCLOCK | VDD | ı | PAD | Serial Clock for SMBus control interface. | | | | 4, 8, 12,
16, 17,
21, 25 | VSS | | PWR | - | Ground pins for clock output buffers. These pins must be returned to the same potential to reduce output clock skew. | | | | 1, 5, 10,
19, 24,
28 | VDDB | - | PWR | - | Power for output clock buffers. | | | | 13 | VDD | - | PWR | | Pin for device core logic. | | | ## Maximum Ratings¹ Voltage Relative to VSS: Voltage Relative to VDD: Storage Temperature: Operating Temperature: Maximum Power Supply: -0.3V 0.3V -65°C to + 150°C -40°C to +85°C This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range: VSS<(Vin or Vout)<VDD Unused inputs must always be tied to an appropriate logic voltage level (either VSS or VDD). ¹ Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required. Document#: 38-07025 Rev. *A #### 2-Wire SMBus Control Interface The 2-wire control interface implements a write only slave interface. The device cannot be read back. Sub-addressing is not supported, thus all <u>preceding bytes must be sent</u> in order to change one of the control bytes. The 2-wire control interface allows each clock output to be individually enabled or disabled. During normal data transfer, the SDATA signal only changes when the SDCLK signal is low, and is stable when SDCLK is high. There are two exceptions to this. A high to low transition on SDATA while SDCLK is high is used to indicate the start of a data transfer cycle. A low to high transition on SDATA while SDCLK is high indicates the end of a data transfer cycle. Data is always sent as complete 8-bit bytes, after which an acknowledge is generated. The first byte of a transfer cycle is a 7-bit address with a Read/Write bit as the LSB. Data is transferred MSB first. The device will respond to writes to 10 bytes (max) of data to address **D2** by generating the acknowledge (low) signal on the SDATA wire following reception of each byte. The device will not respond to any other control interface conditions. Previously set control registers are retained. #### **Serial Control Registers** **NOTE:** The Pin# column lists the affected pin number where applicable. The @Pup column gives the state at true power up. Bytes are set to the values shown only on true power up, and not when the PWR_DWN# pin is activated. Following the acknowledge of the Address Byte (D2), two additional bytes must be sent: - 1) "Command Code " byte, and - 2) "Byte Count" byte. Although the data (bits) in these two bytes are considered "don't care", they must be sent and will be acknowledged. After the Command Code and the Count bytes have been acknowledged, the below described sequence (Byte 0, Byte 1, Byte2,) will be valid and acknowledged. Byte 0: Function Select Register (1 = enable, 0 = Stopped) | Bit | @Pup | Pin# | Description | |-----|------|------|-------------------------------------| | 7 | 1 | - | reserved | | 6 | 1 | - | reserved | | 5 | 1 | - | reserved | | 4 | 1 | - | reserved | | 3 | 1 | 7 | SDRAM3 (Active = 1, Forced low = 0) | | 2 | 1 | 6 | SDRAM2 (Active = 1, Forced low = 0) | | 1 | 1 | 3 | SDRAM1 (Active = 1, Forced low = 0) | | 0 | 1 | 2 | SDRAM0 (Active = 1, Forced low = 0) | Document#: 38-07025 Rev. *A ## **Serial Control Registers (Cont.)** Byte 1: Clock Register (1 = enable, 0 = Stopped) | Bit | @Pup | Pin# | Description | |-----|------|------|-------------------------------------| | 7 | 1 | 27 | SDRAM9 (Active = 1, Forced low = 0) | | 6 | 1 | 26 | SDRAM8 (Active = 1, Forced low = 0) | | 5 | 1 | 23 | SDRAM7 (Active = 1, Forced low = 0) | | 4 | 1 | 22 | SDRAM6 (Active = 1, Forced low = 0) | | 3 | 1 | - | reserved | | 2 | 1 | - | reserved | | 1 | 1 | | reserved | | 0 | 1 | - | reserved | Byte 2: Clock Register (1 = enable, 0 = Stopped) | Bit | @Pup | Pin# | Description | |-----|------|------|-------------------------------------| | 7 | 1 | 18 | SDRAM5 (Active = 1, Forced low = 0) | | 6 | 1 | 11 | SDRAM4 (Active = 1, Forced low = 0) | | 5 | 0 | - | Not Used | | 4 | 0 | - | Not Used | | 3 | 0 | - | Not Used | | 2 | 0 | - | Not Used | | 1 | 1 | - | Not Used | | 0 | 1 | - | Not Used | Document#: 38-07025 Rev. *A ## **Electrical Characteristics** | Characteristic | Symbol | Min | Тур | Max | Units | Conditions | |--|---------------------------------|---------------------------------|--|-----------------|--------------|---| | Input Low Voltage VIL 0.8 Vdc - | | | | | - | | | Input High Voltage | nput High Voltage VIH 2.0 Vdc - | | - | | | | | Input Low Current | IIL | -66 | | | μA | | | Input High Current IIH 66 µA | | | | | | | | Output Low Voltage VOL 0.4 Vdc All Outp | | All Outputs (see buffer spec) | | | | | | Output High Voltage
IOH = 30mA | | | All Outputs Using 3.3V Power (see buffer spec) | | | | | Tri-State leakage Current loz 10 | | μA | | | | | | Dynamic Supply Current | | - | - | 160 | mA | Input frequency = 66 Mhz - All outputs on and at 30 pF load | | | Idd ₁₀₀ | - | - | 220 | mA | Input frequency 100 Mhz - All outputs on and at 30 pF load | | Static Supply Current | Isdd | - | - | 4 | mA | All outputs disabled no input clock | | Short Circuit Current ISC 25 mA 1 output at a time | | 1 output at a time - 30 seconds | | | | | | Input Rise Time TIR 2.4 nS .8 to 2.4 vo | | | | .8 to 2.4 volts | | | | | VDD = VD | D1 thru | ı VDD5 | =3.3V ±5% | 6, , TA = -4 | 0°C to +85°C | ## **Switching Characteristics** | Characteristic | Symbol | Min | Тур | Max | Units | Conditions | | |--|--------|-----|-----|-----|-------|-----------------------------|--| | Output Duty Cycle | - | 45 | 50 | 55 | % | Measured at 1.5V (50/50 in) | | | Buffer out/out Skew All
Buffer Outputs | tSKEW | - | - | 250 | pS | 35 pF Load Measured at 1.5V | | | Buffer input to output Skew | tSKEW | 2.0 | 4.0 | 5.0 | nS | | | | Jitter Cycle to Cycle* TJCC 50 pS @ 35 pF load | | | | | | | | | Jitter Absolute (Peak to TJabs 150 pS @ 35 pF loading Peak)* | | | | | | | | | VDD = VDD1 thru VDD5 = 3.3V ±5%, , TA = -40°C to +85°C | | | | | | | | ^{*}This jitter is additive to the input clock's jitter. ## **TB40_ Type Buffer Characteristics (All Clock Outputs)** | Characteristic | Symbol | Min | Тур | Max | Units | Conditions | | |---|--|-----|-----|-----|------------|----------------|--| | Pull-Up Current Min | IOH _{min} | 30 | - | 39 | mA | Vout = VDD5V | | | Pull-Up Current Max IOH _{max} 75 | | 75 | - | 109 | mA | Vout = 1.5V | | | Pull-Down Current Min | 30 | - | 40 | mA | Vout = 0.4 | | | | Pull-Down Current Max IO | | 75 | - | 103 | mA | Vout = 1.2V | | | Dynamic Output Impedance | Zo | 8 | - | 15 | Ohms | 66 and 100 MHz | | | Rise/Fall Time Min TRF _{min} 1.33 nS 30 pF Load Between 0.4 V and 2.4 V | | | | | | 30 pF Load | | | Rise/Fall Time Max Between 0.4 V and 2.4 V TRF _{max} 1.33 nS 30 pF Load | | | | | | | | | | VDD = VDD1 thru VDD5 =3.3V $\pm 5\%$, TA = -40°C to +85°C | | | | | | | $VDD = VDD1 \text{ thru } VDD5 = 3.3V \pm 5\%, , IA = -40\% \text{ to } +85\%$ ## **Package Drawing and Dimensions** ## 28 Pin SSOP Outline Dimensions | | | INCHES | | MII | LIMETE | RS | |----------------|-------|-----------|-------|-----------|----------|-------| | SYMBOL | MIN | NOM | MAX | MIN | NOM | MAX | | Α | - | - | 0.079 | - | 1 | 2.0 | | A ₁ | 0.002 | - | 0.006 | 0.05 | 1 | 0.15 | | A2 | 0.065 | 0.069 | 0.073 | 1.65 | 1.75 | 1.85 | | В | 0.009 | - | 0.015 | 0.22 | - | 0.38 | | С | 0.004 | - | 0.010 | 0.09 | - | 0.25 | | D | 0.390 | 0.402 | 0.413 | 9.90 | 10.20 | 10.50 | | Е | 0.197 | 0.209 | 0.220 | 5.00 5.30 | | 5.60 | | е | | 0.026 BS0 | | (| 0.65 BSC | ; | | Н | 0.291 | 0.307 | 0.323 | 7.40 | 7.80 | 8.20 | | L | 0.022 | 0.030 | 0.037 | 0.55 | 0.75 | 0.95 | | а | 00 | - | 80 | 00 | - | 80 | ## **Ordering Information** | Part Number | Package Type | Production Flow | |-------------|--------------|----------------------------| | SC660EYB | 28 PIN SSOP | Commercial, -40°C to +85°C | Note: The ordering part number is formed by a combination of device number, device revision, package style, and screening as shown below. Marking: Example: IMI SC660EYB Date Code, Lot # #### **Notice** Cypress Semiconductor Corporation reserves the right to make changes to its products in order to improve design, performance or reliability. Cypress Semiconductor Corporation assumes no responsibility for the use of its products in life supporting and medical applications where the failure or malfunction of the product could cause failure of the life supporting and medical systems. Products are not authorized for use in such applications unless a written approval is requested by the manufacturer and an approval is given in writing by Cypress Semiconductor Corporation for the use of its products in the life supporting and medical applications. | Docun | Document Title: SC660E SMBus System Clock Buffer for Mobile Applications | | | | | | | | |-------|--|----------|--------|---|--|--|--|--| | Docun | Document Number: 38-07025 | | | | | | | | | Rev. | Rev. ECN Issue Orig. of Description of Change | | | | | | | | | | No. | Date | Change | | | | | | | ** | 106953 | 06/14/01 | IKA | Convert from IMI to Cypress | | | | | | *A | 122723 | 12/17/02 | RBI | Added power-up requirements to maximum ratings information. | | | | |