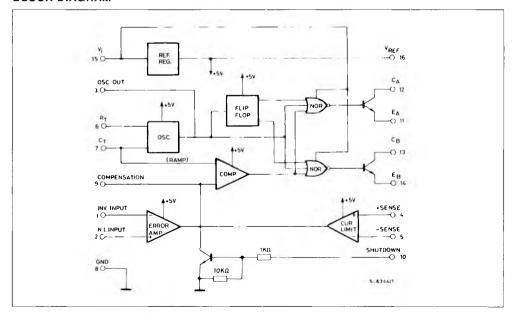

# REGULATING PULSE WIDTH MODULATORS

- COMPLETE PWM POWER CONTROL CIRCUI-TRY
- UNCOMMITTED OUTPUTS FOR SINGLE-EN-DED OR PUSH PULL APPLICATIONS
- LOW STANDBY CURRENT .. 8 mA TYPICAL
- OPERATION UP TO 300 KHz
- 1 % MAXIMUM TEMPERATURE VARIATION OF REFERENCE VOLTAGE

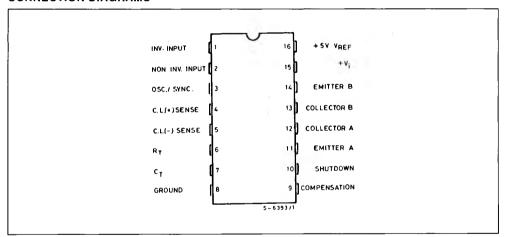

# DESCRIPTION

The SG1524, SG2524, and SG3524 incorporate on a single monolithic chip all the function required for the construction of regulating power supplies inverters or switching regulators. They can also be used as the control element for high power-output applications. The SG1524 family was designed for switching regulators of either polarity, transformer-coupled dc-to-dc converters, transformerless voltage doublers and polarity converter applications employing fixed-frequency, pulse-width modulation

techniques. The dual alternating outputs allows either single-ended or push-pull applications. Each device includes an on-ship reference, error amplifier, programmable oscillator, pulse-steering flipflop, two uncommitted output transistors, a highgain comparator, and current-limiting and shutdown circuitry.



### **BLOCK DIAGRAM**




September 1988

# **ABSOLUTE MAXIMUM RATINGS**

| Symbol           | Parameter                                                      | Value                                | Unit       |
|------------------|----------------------------------------------------------------|--------------------------------------|------------|
| V <sub>IN</sub>  | Supply Voltage                                                 | 40                                   | V          |
| Ic               | Collector Ouptut Current                                       | 100                                  | mA         |
| I <sub>R</sub>   | Reference Output Current                                       | 50                                   | mA         |
| I <sub>T</sub>   | Current Through C <sub>T</sub> Terminal                        | - 5                                  | mA         |
| P <sub>tot</sub> | Total Power Dissipation at Tamb = 70 °C                        | 1000                                 | mW         |
| T <sub>stg</sub> | Storage Temperature Range                                      | - 65 to 150                          | °C         |
| Top              | Operating Ambient Temperature Range SG1524<br>SG2524<br>SG3524 | - 55 to 125<br>- 25 to 85<br>0 to 70 | ပံ့<br>ပံ့ |

# **CONNECTION DIAGRAMS**



# THERMAL DATA

|                            |                                                                        |     | Plastic<br>DIP-16 | Ceramic<br>DIP-16 | SO16J   |
|----------------------------|------------------------------------------------------------------------|-----|-------------------|-------------------|---------|
| R <sub>th j-amb</sub>      | Themal Resistance Junction-ambient Themal Resistance Junction-aluminia | Max | 80 °C/W           | 150 °C/W          | _       |
| R <sub>th j-aluminia</sub> |                                                                        | Max | -                 | -                 | 50 °C/W |

<sup>\*</sup> Thermal resistance junction–alumina with the device soldered on the middle of an alumina supporting substrate measuring 15 x 20 mm; 0.65 mm thickness with infinite heatsink.

**ELECTRICAL CHARACTERISTICS** (unless otherwise stated , these specifications apply for  $T_j = -55~\%$  to + 125 % for the SG1524, -25~% to + 85 % for the SG2524, and 0 % to + 70 % for the SG3524, V  $_N = 20~\text{V}$ , and f = 20 KHz).

| Symbol   | Parameter | Test conditions | SG1524<br>SG2524 SG |      | 663  |      | G352 | 4    | Unit |  |
|----------|-----------|-----------------|---------------------|------|------|------|------|------|------|--|
| Symbol . | rarameter | rest conditions | Min.                | Тур. | Max. | Min. | Тур. | Max. |      |  |

# REFERENCE SECTION

| V <sub>REF</sub>          | Output Voltage                 |                                              | 4.8 | 5   | 5.2 | 4.6 | 5   | 5.4 | ٧  |
|---------------------------|--------------------------------|----------------------------------------------|-----|-----|-----|-----|-----|-----|----|
| $\Delta V_{REF}$          | Line Regulation                | V <sub>IN</sub> = 8 to 40 V                  |     | 10  | 20  |     | 10  | 30  | mV |
| $\Delta V_{REF}$          | Load Regulation                | I <sub>L</sub> = 0 to 20 mA                  |     | 20  | 50  |     | 20  | 50  | mV |
|                           | Ripple Rejection               | f = 120 Hz, T <sub>j</sub> = 25 °C           |     | 66  |     |     | 66  |     | dB |
|                           | Short Circuit Current<br>Limit | V <sub>REF</sub> = 0, T <sub>j</sub> = 25 °C |     | 100 |     |     | 100 |     | mA |
| $\Delta V_{REF}/\Delta T$ | Temp. Stability                | Over Operating Temp. Range                   |     | 0.3 | 1   |     | 0.3 | 1   | %  |
| ΔV <sub>REF</sub>         | Long Term Stability            | T <sub>j</sub> = 125 °C, t = 1000 Hrs        |     | 20  |     |     | 20  |     | mV |

# **OSCILLATOR SECTION**

| f <sub>MAX</sub> | Maximum, Frequency    | $C_T = 0.001 \mu F$ , $R_T = 2 k\Omega$                          | 300 |   | 300   |   | kHz |
|------------------|-----------------------|------------------------------------------------------------------|-----|---|-------|---|-----|
|                  | Initial Accuracy      | R <sub>⊤</sub> and C <sub>⊤</sub> Constant                       | 5   |   | <br>5 |   | %   |
|                  | Voltage Stability     | $V_{IN} = 8 \text{ to } 40 \text{ V}, T_j = 25 ^{\circ}\text{C}$ |     | 1 |       | 1 | %   |
| Δf/ΔΤ            | Temperature Stability | Over Operating Temp. Range                                       |     | 2 |       | 2 | %   |
|                  | Output Amplitude      | Pin 3, T <sub>j</sub> = 25 °C                                    | 3.5 |   | 3.5   |   | ٧   |
|                  | Output Pulse Width    | $C_T = 0.01 \mu F, T_j = 25 °C$                                  | 0.5 |   | 05    |   | μs  |

# **ERROR AMPLIFIER SECTION**

| Vos            | Input Offset Voltage      | V <sub>CM</sub> = 2.5 V     |     | 0.5 | 5   |      | 2  | 10  | mV  |
|----------------|---------------------------|-----------------------------|-----|-----|-----|------|----|-----|-----|
| I <sub>b</sub> | Input Bias Current        | V <sub>CM</sub> = 2.5 V     |     | 2   | 10  |      | 2  | 10  | μА  |
| G√             | Open Loop Volt. Gain      |                             | 72  | 80  |     | , 60 | 80 |     | dB  |
| CMV            | Common Mode Volt.         | T <sub>j</sub> = 25 °C      | 1.8 |     | 3.4 | 1.8  |    | 3.4 | ٧   |
| CMR            | Comm. Mode Rejec.         | T <sub>j</sub> = 25 °C      |     | 70  |     |      | 70 |     | dB  |
| В              | Small Signal<br>Bandwidth | $A_v = 0$ dB, $T_j = 25$ °C |     | 3   |     |      | 3  |     | MHz |
| Vo             | Output Voltage            | T <sub>j</sub> = 25 °C      | 0.5 |     | 3.8 | 0.5  |    | 3.8 | ٧   |

# **COMPARATOR SECTION**

|                 | Duty-cycle         | % Each Output On   | 0 |     | 45 | 0 |     | 45 | %  |
|-----------------|--------------------|--------------------|---|-----|----|---|-----|----|----|
| V <sub>IT</sub> | Input Threshold    | Zero Duty-cycle    |   | 1   |    |   | 1   |    | ٧  |
| V <sub>IT</sub> | Input Threshold    | Maximum Duty-cycle |   | 3.5 |    |   | 3.5 |    | ٧  |
| Ι <sub>b</sub>  | Input Bias Current |                    |   | 1   |    |   | 1   |    | μА |

# **ELECTRICAL CHARACTERISTICS** (continued)

| Symt | Symbol Parameter Test conditions | SG1524<br>SG2524 |                 |      | 5    | SG3524 |      |      |      |
|------|----------------------------------|------------------|-----------------|------|------|--------|------|------|------|
| - Cy |                                  | - Tarameter      | Test conditions | Min. | Тур. | Max.   | Min. | Тур. | Max. |

# **CURRENT LIMITING SECTION**

|     | Sense Voltage      | Pin 9 = 2 V With Error<br>Amplifier<br>Set for Max. Out, Tj = 25 °C | 190 | 200 | 210 | 180 | 200 | 220 | mV    |
|-----|--------------------|---------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-------|
|     | Sense Voltage T.C. |                                                                     |     | 0.2 |     |     | 0.2 |     | mV/°C |
| CMV | Common Mode Volt.  |                                                                     | - 1 |     | + 1 | - 1 |     | + 1 |       |

# **OUTPUT SECTION** (each output)

|                  | Collector-emitter Volt.    |                                                | 40 |     |    | 40 |     |    | V  |
|------------------|----------------------------|------------------------------------------------|----|-----|----|----|-----|----|----|
|                  | Collector Leackage<br>Cur. | V <sub>CE</sub> = 40 V                         |    | 0.1 | 50 |    | 0.1 | 50 | μА |
|                  | Saturation Voltage         | I <sub>c</sub> = 50 mA                         |    | 1   | 2  |    | 1   | 2. | ٧  |
|                  | Emitter Out. Voltage       | V <sub>IN</sub> = 20 V                         | 17 | 18  |    | 17 | 18  |    | ٧  |
| tr               | Rise Time                  | $R_c = 2 K\Omega$ , $T_j = 25 °C$              |    | 0.2 |    |    | 0.2 |    | μs |
| t <sub>f</sub>   | Fall Time                  | $R_c = 2 \text{ K}\Omega, T_j = 25 \text{ °C}$ |    | 0.1 |    |    | 0.1 |    | μs |
| l <sub>q</sub> * | Total Standby Curr.        | V <sub>IN</sub> = 40 V                         |    | 8   | 10 |    | 8   | 10 | mA |

<sup>(\*)</sup> Excluding oscillator charging current, error and current limit dividers, and with outputs open.

Figure 1 : Open-loop Voltage Amplification of Error Amplifier vs. Frequency.

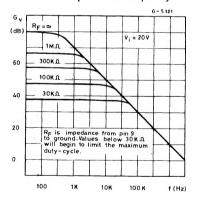



Figure 2 : Oscillator Frequency vs. Timing Components.

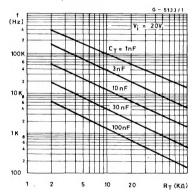
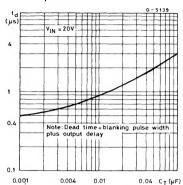




Figure 3 : Output Dead Time vs. Timing Capacitance Value.



**Figure 4 :** Output Saturation Voltage vs. Load Current .

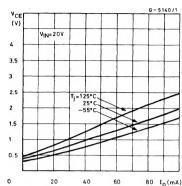
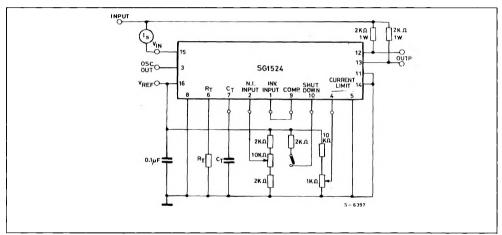




Figure 5 : Open Loop Test Circuit.



### PRINCIPLES OF OPERATION

The SG1524 is a fixed-frequency pulse-with-modulation voltage regulator control circuit. The regulator operates at a frequency that is programmed by one timing resistor (R<sub>T</sub>) and one timing capacitor (C<sub>T</sub>). R<sub>T</sub> established a constant charging current for C<sub>T</sub>. This results in a linear voltage ramp at CT, which is fed to the comparator providing linear control of the output pulse width by the error amplifier. The SG1524 contains, an on-board 5 V regulator that serves as a reference as well as powering the SG1524's internal control circuitry and is also useful in supplying external support functions. This reference voltage is lowered externally by a resistor divider to provide a reference within the common-

mode range of the error amplifier or an external reference may be used. The power supply output is sensed by a second resistor divider network to generale a feedback signal to error amplifier. The amplifier output voltage is then compared to the linear voltage ramp at  $C_T$ . The resulting modulated pulse out of the high-gain comparator is then steered to the appropriate output pass transistors ( $Q_A$  or  $Q_B$ ) by the pulse-steering flip-flop, which is synchronously toggled by the oscillator output. The oscillator output pulse also serves as a blanking pulse to assure both output are never on simultaneously during the transition times. The width of the blanking pulse is controlled by the value of  $C_T$ . The outputs

may be applied in a push-pull configuration in which their frequency is half that of the base oscillator, or paralleled for single-ended applications in which the frequency is equal to that of the oscillator. The output of the error amplifier shares a common input to the comparator with the current limiting and shutdown circuitry and can be overridden by signals from either of these inputs. This common point is also available externally and may be employed to control the gain of, or to compensate, the error amplifier, or to provide additional control to the regulator.

### RECOMMENDED OPERATING CONDITIONS

Supply voltage  $V_{\text{IN}}$  8 to 40 V Reference Output Current 0 to 20 mA Current through  $C_{\text{T}}$  Terminal - 0.03 to - 2 mA

 $\begin{array}{lll} \mbox{Timing Resistor, R}_T & \mbox{1.8 to } 100 & \mbox{K}\Omega \\ \mbox{Timing Capacitor, C}_T & \mbox{0.001 to } 0.1 & \mbox{$\mu$F} \end{array}$ 

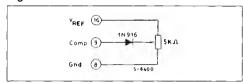
### TYPICAL APPLICATIONS DATA

#### OSCII LATOR

The oscillator controls the frequency of the SG1524 and is programmed by  $R_T$  and  $C_T$  according to the approximate formula :

$$f \approx \frac{1.18}{B_T C_T}$$

where  $R_T$  is in  $K\Omega$   $C_T$  is in  $\mu F$  f is in KHz


Pratical values of  $C_T$  fall between 0.001 and 0.1  $\mu$ F. Pratical values of  $R_T$  fall between 1.8 and 100 K $\Omega$ . This results in a frequency range typically from 120 Hz to 500 KHz.

#### **BLANKING**

The output pulse of the oscillator is used as a blanking pulse at the output. This pulse width is controlled by the value of  $C_T$ . If small values of  $C_T$  are required for frequency control, the oscillator output pulse width may still be increased by applying a shunt capacitance of up to 100 pF from pin 3 to ground. If still greater dead-time is required, it should be accomplished by limiting the maximum duty cy-

cle by clamping the output of the error amplifier. This can easily be done with the circuit below:

Figure 6.



### SYNCHRONOUS OPERATION

When an external clock is desired, a clock pulse of approximately 3 V can be applied directly to the oscillator ouptut terminal. The impedance to ground at this point is approximately 2 K $\Omega$ . In this configuration RT CT must be selected for a clock period slightly greater than that the external clock.

If two more SG1524 regulators are to be operated synchronously, all oscillator output terminals should be tied together, all  $C_T$  terminals connected to a single timing capacitor, and the timing resistor connected to a single  $R_T$  terminal. The other  $R_T$  terminals can be left open or shorted to  $V_{\text{REF}}.$  Minimum lead lengths should be used between the  $C_T$  terminals.

Figure 7: Flyback Converter Circuit.

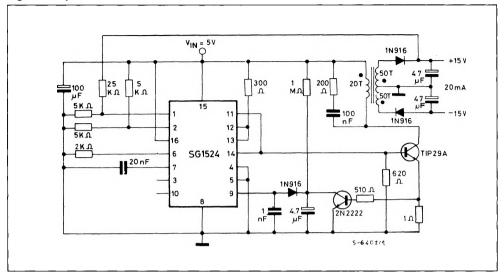
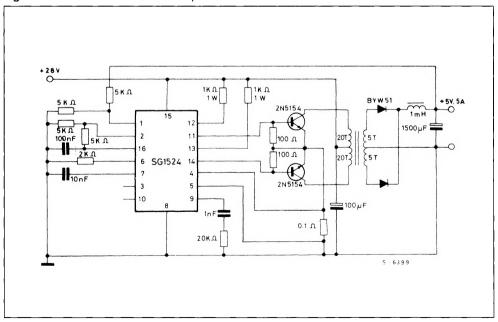




Figure 8: PUSH-PULL transformer-coupled circuit.

