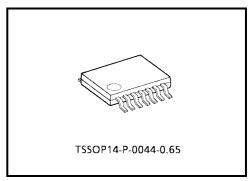
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VCX74FT


Low-Voltage Dual D-Type Flip-Flop with 3.6-V Tolerant Inputs and Outputs

The TC74VCX74FT is a high-performance CMOS D-type flip-flop. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

It is also designed with overvoltage tolerant inputs and outputs up to $3.6\ V.$

The signal level applied to the D INPUT is transferred to Q $\overline{\text{OUTPUT}}$ during the positive going transition of the CK pulse. $\overline{\text{CLR}}$ and $\overline{\text{PR}}$ are independent of the CK and are accomplished by setting the appropriate input low.

All inputs are equipped with protection circuits against static discharge.

Weight: 0.06 g (typ.)

Features

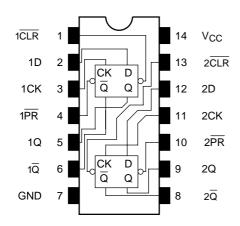
- Low-voltage operation: V_{CC} = 1.8 to 3.6 V
- High-speed operation: $t_{pd} = 9.2 \text{ ns (max) (VCC} = 3.0 \text{ to } 3.6 \text{ V)}$

 $t_{pd} = 4.6 \text{ ns (max) (VCC} = 2.3 \text{ to } 2.7 \text{ V)}$

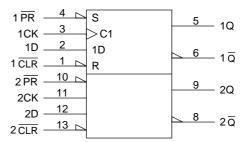
 $: t_{pd} = 3.5 \text{ ns (max) (VCC} = 1.8 \text{ V)}$

• Output current: IOH/IOL = ±24 mA (min) (VCC = 3.0 V)

 $: I_{OH}/I_{OL} = \pm 18 \text{ mA (min) (V}_{CC} = 2.3 \text{ V)}$


 $: IOH/IOL = \pm 6 \text{ mA (min) (VCC} = 1.8 \text{ V)}$

- Latch-up performance: ±300 mA
- ESD performance: Machine model > ±200 V


: Human body model $> \pm 2000 \text{ V}$

- Package: TSSOP (thin shrink small outline package)
- Power-down protection provided on all inputs and outputs

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

	Inp	uts		Out	puts	Function
CLR	PR	D	CK	Q	IQ	Function
L	Н	Х	Х	L	Н	Clear
Н	L	Х	Х	Н	L	Preset
L	L	Х	Х	Н	Н	_
Н	Н	L	\Box	L	Н	_
Н	Н	Н	4	Н	L	
Н	Н	Х	→	Qn	Qn	No change

X: Don't care

Maximum Ratings

Characteristics	Symbol	Symbol Rating	
Power supply voltage	V _{CC}	-0.5 to 4.6	V
DC input voltage	V _{IN}	-0.5 to 4.6	V
		-0.5 to 4.6 (Note 1)	
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
		(Note 2)	
Input diode current	I _{IK}	-50	mA
Output diode current	lok	±50 (Note 3)	mA
DC output current	l _{OUT}	±50	mA
Power dissipation	P _D	180	mW
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: $V_{CC} = 0 V$

Note 2: High or low state. IOUT absolute maximum rating must be observed.

Note 3: V_{OUT} < GND, V_{OUT} > V_{CC}

Recommended Operating Range

Characteristics	Symbol	Rating	Unit	
Power supply voltage	Vcc	1.8 to 3.6	V	
Tower supply voltage	VCC	1.2 to 3.6 (Note 4)	V	
Input voltage	V_{IN}	-0.3 to 3.6	٧	
Output voltage	Vout	0 to 3.6 (Note 5)	V	
Output voltage	VOUT	0 to V _{CC} (Note 6)	V	
		±24 (Note 7)		
Output current	I _{OH} /I _{OL}	±18 (Note 8)	mA	
		±6 (Note 9)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 10)	ns/V	

Note 4: Data retention only

Note 5: $V_{CC} = 0 V$

Note 6: High or low state

Note 7: $V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$

Note 8: $V_{CC} = 2.3 \text{ to } 2.7 \text{ V}$

Note 9: $V_{CC} = 1.8 \text{ V}$

Note 10: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85° C, 2.7 V < $V_{CC} \le 3.6$ V)

Characteristics		Symbol	Test	V _{CC} (V)	Min	Max	Unit	
H-level		V _{IH}		_	2.7 to 3.6	2.0	_	V
Input voltage	L-level	V _{IL}		_	2.7 to 3.6	_	0.8	V
				$I_{OH} = -100 \mu A$	2.7 to 3.6	V _{CC} - 0.2	_	
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	I _{OH} = -12 mA	2.7	2.2	_	
				I _{OH} = -18 mA	3.0	2.4	_	V
Output voltage				I _{OH} = -24 mA	3.0	2.2	_	
	L-level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 100 μA	2.7 to 3.6	_	0.2	
				I _{OL} = 12 mA	2.7	_	0.4	
				I _{OL} = 18 mA	3.0	_	0.4	
				I _{OL} = 24 mA	3.0	_	0.55	
Input leakage curre	nt	I _{IN}	V _{IN} = 0 to 3.6 V		2.7 to 3.6	_	±5.0	μΑ
Power off leakage current		l _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μΑ
Quiescent supply current		laa	V _{IN} = V _{CC} or GND		2.7 to 3.6	_	20.0	
		Icc	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		2.7 to 3.6	_	±20.0	μΑ
Increase in I _{CC} per input		Δl _{CC}	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	750	

3

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteristics		Symbol	Test		Min	Max	Unit	
		Cymbol	1000	Test Condition		141111	Wax	Offic
Input voltage	H-level	V _{IH}		_	2.3 to 2.7	1.6	_	V
input voltage	L-level	V _{IL}		_	2.3 to 2.7	_	0.7	V
				$I_{OH} = -100 \mu A$	2.3 to 2.7	V _{CC} - 0.2	_	
	H-level	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = -6 mA	2.3	2.0	_	V
				I _{OH} = -12 mA	2.3	1.8	_	
Output voltage				I _{OH} = -18 mA	2.3	1.7	_	
			$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 100 μA	2.3 to 2.7	_	0.2	
	L-level	V_{OL}		I _{OL} = 12 mA	2.3	_	0.4	
				I _{OL} = 18 mA	2.3	_	0.6	
Input leakage current		I _{IN}	V _{IN} = 0 to 3.6 V		2.3 to 2.7	_	±5.0	μА
Power-off leakage current		I _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μΑ
Quioscont supply (Quiescent supply current		$V_{IN} = V_{CC}$ or GND		$N = V_{CC}$ or GND 2.3 to 2.7	_	20.0	^
Quiescent supply to			V _{CC} ≤ V _{IN} ≤ 3.6 V		2.3 to 2.7	_	±20.0	μΑ

DC Characteristics (Ta = -40 to 85° C, 1.8 V \leq V_{CC} < 2.3 V)

Characteristics		Symbol Test Condition			Min	Max	Unit	
		Cymbol	1031 0	V _{CC} (V)	IVIIII	IVIAX	Onit	
Input voltago	H-level	V _{IH}		_	1.8 to 2.3	0.7 × V _{CC}	_	V
Input voltage L-level		V _{IL}	_		1.8 to 2.3	_	0.2 × V _{CC}	V
	H-level	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	V
Output voltage				$I_{OH} = -6 \text{ mA}$	1.8	1.4	_	
	L-level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 100 \mu A$	1.8		0.2	
	L-level			$I_{OL} = 6 \text{ mA}$	1.8	_	0.3	
Input leakage current		I _{IN}	V _{IN} = 0 to 3.6 V		1.8	_	±5.0	μА
Power-off leakage current		I _{OFF}	V _{IN} , V _{OUT} = 0 to 3.6 V		0	_	10.0	μΑ
Outroped supply supply		Icc	V _{IN} = V _{CC} or GND		1.8		20.0	
Quiescent supply co	Quiescent supply current		$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		1.8	_	±20.0	μА

AC Characteristics (Ta = -40 to 85°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF, $R_L = 500~\Omega$)

Characteristics	Symbol	Test Condition		Min	Max	Unit
Gridiadionolio	Cymbol	r oot containen	V _{CC} (V)	IVIIII	Max	OTIE
			1.8	100	_	
Maximum clock frequency	f _{max}	Figure 1, Figure 2	2.5 ± 0.2	200	_	MHz
			3.3 ± 0.3	250	_	
Duana action delay times			1.8	1.0	9.2	
Propagation delay time $(CK-Q, \overline{Q})$	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	0.8	4.6	ns
(CN-Q,Q)	t _{pHL}		3.3 ± 0.3	0.6	3.5	
Daniel and Complete Complete			1.8	1.0	9.2	
Propagation delay time (CLR , PR -Q, Q)	t _{pLH}	Figure 1, Figure 4	2.5 ± 0.2	0.8	4.6	ns
(CLK, PR-Q,Q)	t _{pHL}		3.3 ± 0.3	0.6	3.5	
Minimovana mula a voiettle		Figure 1, Figure 2	1.8	4.0	_	ns
Minimum pulse width (CK)	t _W (H)		2.5 ± 0.2	1.5	_	
(CK)	t _W (L)		3.3 ± 0.3	1.5	_	
Minimum nula a width		Figure 1, Figure 4	1.8	4.0	_	ns
Minimum pulse width (CLR, PR)	t _W (L)		2.5 ± 0.2	1.5		
(OLN,FN)			3.3 ± 0.3	1.5	_	
			1.8	3.0		
Minimum set-up time	ts	Figure 1, Figure 2	2.5 ± 0.2	1.5	_	ns
			3.3 ± 0.3	1.5	_	
			1.8	1.0	_	
Minimum hold time	t _h	Figure 1, Figure 2	2.5 ± 0.2	1.0	_	ns
			3.3 ± 0.3	1.0		
			1.8	3.0	_	ns
Minimum removal time	trem	Figure 1, Figure 3	2.5 ± 0.2	2.0	_	
			3.3 ± 0.3	1.5	_	

For $C_L = 50 \ pF$, add approximately 300 ps to the AC maximum specification.

5 2001-10-17

Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF)

Characteristics	Symbol	Test Condition		Тур.	Unit	
Characteristics	Symbol	rest Condition	V _{CC} (V)		Offic	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 1.8	0.25		
Quiet output maximum dynamic V _{OL}	V _{OLP}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 2.5	0.6	V	
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 3.3	0.8		
	V _{OLV}	$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 1.8	-0.25		
Quiet output minimum dynamic V _{OL}		$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 2.5	-0.6	V	
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 3.3	-0.8		
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 1.8	1.5		
Quiet output minimum dynamic V _{OH}	V _{OHV}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 2.5	1.9	V	
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$ (Note	11) 3.3	2.2		

Note 11: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	nbol Test Condition		V _{CC} (V)	Тур.	Unit	
Input capacitance	C _{IN}		_		1.8, 2.5, 3.3	6	pF
Power dissipation capacitance	C_{PD}	f _{IN} = 10 MHz		(Note 12)	1.8, 2.5, 3.3	20	pF

Note 12: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/2 (per F/F)$

AC Test Circuit

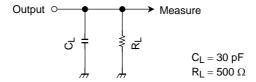


Figure 1

AC Waveform

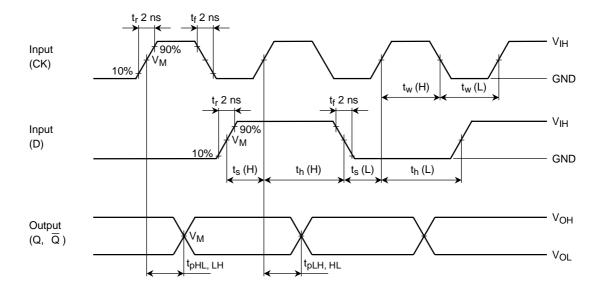


Figure 2 $t_{pLH}, t_{pHL}, t_w, t_s, t_h$

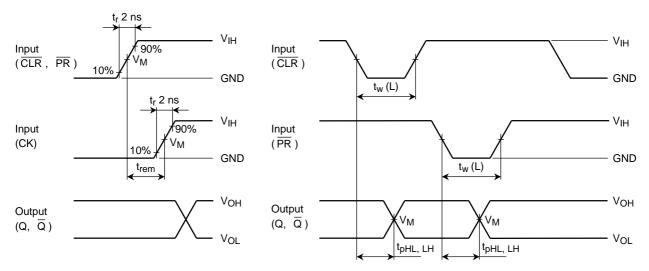
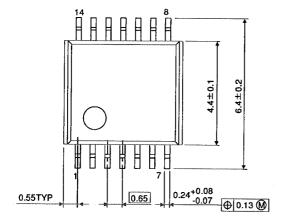
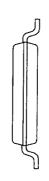


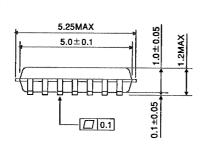
Figure 3 t_{rem}

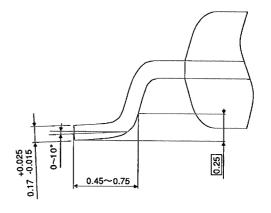
Figure 4 t_{pLH} , t_{pHL} , t_{w}

Symbol	Vcc							
Symbol	$3.3\pm0.3~\textrm{V}$	$2.5\pm0.2\textrm{V}$	1.8 V					
V _{IH}	2.7 V	V _{CC}	V _{CC}					
V _M	1.5 V	V _{CC} /2	V _{CC} /2					


7


2001-10-17


Unit: mm


Package Dimensions

TSSOP14-P-0044-0.65

Weight: 0.06 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.