

4 W AUDIO AMPLIFIER

- HIGH OUTPUT CURRENT CAPABILITY (up to 2 A)
- PROTECTION AGAINST CHIP OVERTEM-PERATURE
- LOW NOISE
- HIGH SUPPLY VOLTAGE REJECTION
- SUPPLY VOLTAGE RANGE: 4 V TO 20 V

DESCRIPTION

The TDA1904 is a monolithic integrated circuit in POWERDIP package intended for use as low-frequency power amplifier in wide range of applications in portable radio and TV sets.

PIN CONNECTION (top view)

TEST AND APPLICATION CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vs	Supply Voltage	20	V	
Io	Peak Output Current (non repetitive)	2.5	Α	
Io	Peak Output Current (repetitive)	2	Α	
P _{tot}	Total Power Dissipation at $T_{amb} = 80 ^{\circ}\text{C}$ $T_{pins} = 60 ^{\circ}\text{C}$	1 6	W	
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C	

THERMAL DATA

R _{th j-case}	Thermal Resistance Junction-pins	Max.	15	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max.	70	°C/W

SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS (refer to the test circuit, $T_{amb} = 25 \, ^{\circ}\text{C}$, R_{th} (heatsink) = 20 $^{\circ}\text{C/W}$, unless otherwise specified)

Symbol	Parameter Test Conditions			Тур.	Max.	Unit
Vs	Supply Voltage				20	V
Vo	Quiescent Output Voltage	V _s = 4 V V _s = 14 V		2.1 7.2		V
I _d	Quiescent Drain Current	V _s = 9 V V _s = 14 V		8 10	15 18	mA
Po	Output Power		1.8 4 3.1 0.7	2 4.5		w
d	Harmonic Distortion	$f = 1 \text{ KHz} R_L = 4 \Omega$ $V_S = 9 \text{ V}$ Po = 50 mW to 1.2 W		0.1	0.3	%
Vi	Input Saturation Voltage (rms)	V _s = 9 V V _s = 14 V	0.8			٧
Ri	Input Resistance (pin 8)	f = 1 KHz	55	150		kΩ
η	Efficiency			70 65		%
BW	Small Signal Bandwidth (- 3 dB)	V _s = 14 V R _L = 4 Ω		40 to 40,000		Hz
G _v	Voltage Gain (open loop)	V _s = 14 V f = 1 KHz		75		dB
Gv	Voltage Gain (closed loop)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39.5	40	40.5	dB
e _N	Total Input Noise	$R_0 = 50 \Omega$ $R_0 = 10 k\Omega$		1.2 2	4	μV
		$R_g = 50 \Omega$ $R_g = 10 k\Omega$ (°°)		2		μV
SVR	Supply Voltage Rejection	$\begin{aligned} &V_s = 12 \text{ V} \\ &f_{ripple} = 100 \text{ Hz} R_g = 10 \text{ k}\Omega \\ &V_{ripple} = 0.5 \text{ V}_{rms} \end{aligned}$	40	50		dB
T _{sd}	Thermal Shut-down Case Temperature	P _{tot} = 2 W		120		℃

Note: (') Weighting filter = curve A.

('') Filter with noise bendwidth: 22 Hz to 22 KHz.

Figure 1: Test and Application Circuit.

Figure 2 : P.C. Board and Components Layout of Figure 1 (1 : 1 scale).

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 1.

When the supply voltage V_S is less than 6 V, a 68 Ω

resistor must be connected between pin 2 and pin 3 in order to obtain the maximum output power.

Different values can be used. The following table can help the designer.

	Reccom. Value	Purpose	Larger than Recommended Value	Smaller than	Allowed	Range
Components				Recommended Value	Min.	Max.
R ₁	10 kΩ	Feedback	Increase of Gain.	Decrease of Gain. Increase Quiescent Current.	9 R ₃	
R ₂	100 Ω	Resistors	Decrease of Gain.	Increase of Gain.		1 kΩ
R ₃	4.7 Ω	Frequency Stability	Danger of Oscillation at High Frequencies with Inductive Loads.			
R ₄	68 Ω	Increase of the Output Swing with Low Supply Voltage.			39 Ω	220 Ω
C ₁	2.2 μF	Input DC Decoupling.	Higher Cost Lower Noise.	Higher Low Frequency Cutoff. Higher Noise.		
C ₂	0.1 μF	Supply Voltage Bypass.		Danger of Oscillations.		
C ₃	22 μF	Ripple Rejection	Increase of SVR Increase of the Switch-on Time.	Degradation of SVR.	2.2 μF	100 μF
C ₄	2.2 μF	Inverting Input DC Decoupling.	Increase of the Switch-on Noise	Higher Low Frequency Cutoff.	0.1 μF	
C ₅	47 μF	Bootstrap.		Increase of the Distortion at Low Frequency.	10 μF	100 μF
C ₆	0.22 μF	Frequency Stability.		Danger of Oscillation.		
C ₇	1000 μF	Output DC Decoupling.		Higher Low Frequency Cutoff.		

Figure 3 : Quiescent Output Voltage vs. Supply Voltage.

Figure 5 : Output Power vs. Supply Voltage.

Figure 7: Distortion Output Power.

Figure 4 : Quiescent Drain Current vs. Supply Voltage.

Figure 6: Distortion vs. Output Power.

Figure 8: Distortion vs. Output Power.

Figure 9 : Distortion vs. Output Power.

Figure 11: Distortion vs. Output Power.

Figure 13: Distortion vs. Frequency.

Figure 10 : Distortion vs. Output Power.

Figure 12: Distortion vs. Frequency.

Figure 14: Distortion vs. Frequency.

Figure 15: Distortion vs. Frequency.

Figure 17: Total Power Dissipation and Efficiency vs. Output Power.

Figure 19: Total Power Dissipation vs. Output Power.

Figure 16 : Supply Voltage Rejection vs. Frequency.

Figure 18 : Total Power Dissipation vs. Output Power.

Figure 20 : Total Power Dissipation vs. Output Power.

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

- An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily tolerated since the T_j cannot be higher than 150 °C.
- 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.

If for any reason, the junction temperature increase up to 150 °C, the thermal shut-down simply reduces the power dissipation and the current consumption.

MOUNTING INSTRUCTION

The TDA1904 is assembled in the Powerdip, in which 8 pins (from 9 to 16) are attached to the frame and remove the heat produced by the chip.

Figure 21 shows a PC board copper area used as a heatsink (I = 65 mm).

The thermal resistance junction-ambient is 35 °C.

Figure 21: Example of Heatsink Using PC Board Copper (I = 65 mm).

