

8 W AUDIO AMPLIFIER

- FLEXIBILITY IN USE WITH A MAX OUTPUT CURRENT OF 3 A AND AN OPERATING SUP-PLY VOLTAGE RANGE OF 4 V TO 30 V
- PROTECTION AGAINST CHIP OVERTEM-PERATURE
- SOFT LIMITING IN SATURATION CONDI-TIONS
- LOW "SWITCH-ON" NOISE
- LOW NUMBER OF EXTERNAL COMPO-NENTS
- HIGH SUPPLY VOLTAGE REJECTION
- VERY LOW NOISE

DESCRIPTION

The TDA1908 is a monolithic integrated circuit in 12 lead quad in-line plastic package intended for low frequency power applications. The mounting is compatible with the old types TBA800, TBA810S, TCA830S and TCA940N.

CONNECTION DIAGRAM (top view)

APPLICATION CIRCUIT

SCHEMATIC DIAGRAM

TEST CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	30	V
I _o	Output Peak Current (non repetitive)	3.5	Α
Io	Output Peak Current (repetitive)	3	Α
P _{tot}	Power Dissipation : at T _{amb} = 80 °C at T _{amb} = 90 °C	1 5	W
T _{stg} , T ₁	Storage and Junction Temperature	- 40 to 150	°C

THERMAL DATA

Rth Hab	Thermal Resistance Junction-tab	Max	12	°C/W
Rin j-amb	Thermal Resistance Junction-ambient	Max	(°) 70	°C/W

^{(&#}x27;) Obtained with tabs soldered to printed circuit board with min copper area.

ELECTRICAL CHARACTERISTICS (refer to the test circuit, $T_{amb} = 25$ °C, R_{th} (heatsink) = 8 °C/W, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		4		30	V
Vo	Quiescent Output Voltage	V _s = 4 V V _s = 18 V V _s = 30 V	1.6 8.2 14.4	2.1 9.2 15.5	2.5 10.2 16.8	V
Id	Quiescent Drain Current	V _s = 4 V V _s = 18 V V _s = 30 V		15 17.5 21	35	mA
V _{CEsat}	Output Stage Saturation Voltage (each output transistor)	$I_C = 1 A$ $I_C = 2.5 A$		0.5		٧
Po	Output Power	$\begin{array}{llllllllllllllllllllllllllllllllllll$	7 6.5 4.5	2.5 5.5 9 8 5.3		W
d	Harmonic Distortion			0.1		%
Vi	Input Sensitivity	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		37 52 64 90		mV
Vi	Input Saturation Voltage (rms)	$V_s = 9 V$ $V_s = 14 V$ $V_s = 18 V$ $V_s = 24 V$	0.8 1.3 1.8 2.4			V
Ri	Input Resistance (pin 8)	f = 1 kHz	60	100		ΚΩ
Is	Drain Current			570 730 500 310		mA
η	Efficiency	$V_s = 18 \text{ V}$ $f = 1 \text{ kHz}$ $R_L = 4 \Omega$ $P_0 = 9 \text{ W}$		72		%
BW	Small Signal Bandwidth (- 3 dB)	$V_{s} = 18 \text{ V} R_{L} = 4 \Omega P_{o} = 1 \text{ W}$	40	to 40 0	00	Hz
G _v	Voltage Gain (open loop)	f = 1 kHz		75		dB
Gv	Voltage Gain (closed loop)	$V_s = 18 V$ $R_L = 4 \Omega$ $f = 1 \text{ kHz}$ $P_o = 1 \text{ W}$	39.5	40	40.5	dB

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test co	nditions	Min.	Typ.	Max.	Unit
e _N	Total Input Noise	(°)	$R_g = 50 \Omega$ $R_g = 1 K\Omega$ $R_g = 10 K\Omega$		1.2 1.3 1.5	4.0	μV
		(°°)	$R_g = 50 \Omega$ $R_g = 1 K\Omega$ $R_g = 10 K\Omega$		2.0 2.0 2.2	6.0	μV
S/N	Signal to Noise Ratio	V _s = 18 V P _o = 9 W	$R_g = 10 \text{ K}\Omega$ $R_g = 0$ (°)		92 94		dB
		$R_L = 4 \Omega$	$R_g = 10 \text{ K}\Omega$ $R_g = 0$ (a)		88 90		dB
SVR	Supply Voltage Rejection	V _s = 18 V f _{ripple} = 100 Hz	$R_L = 4 \Omega$ $R_g = 10 K\Omega$	40	50		dB
T _{sd}	Thermal Shut-down Junction Temperature (*)				145		°C

Note: (*) Weighting filter = curve A

(") Filter with noise bandwith : 22 Hz to 22 KHz.

Figure 1 : Quiescient Output Voltage vs. supply Voltage.

Figure 3: Output Power vs. Supply Voltage.

Figure 2 : Quiescent Drain Current vs. Supply Voltage.

Figure 4: Distortion vs. Output power ($R_L = 16 \Omega$).

Figure 5: Distortion vs. Output power ($R_L = 8 \Omega$).

Figure 7 : Distortion vs. Frequency ($R_L = 16 \Omega$).

Figure 9: Distortion vs. Frequency ($R_L = 4 \Omega$).

Figure 6 : Distortion vs. Output Power ($R_L = 4 \Omega$).

Figure 8 : Distortion vs. Frequency ($R_L = 8 \Omega$).

Figure 10: Open Loop Frequency Response.

Figure 13: Supply Voltage Rejection vs. Voltage Gain.

Figure 15: Max Power Dissipation vs. Supply Voltage.

Figure 11: Output power vs. Input Voltage. Figure 12: Values of Capacitor C_x Versus Gain and Bw.

Figure 14: Supply Voltage Rejection vs. Source Resistance..

Figure 16: Power Dissipation and Efficiency vs. Output Power (Vs = 14 V).

Figure 17 : Power Dissipation and Efficiency vs. Output Power ($V_s = 18 \text{ V}$).

Figure 18: Power Dissipation and Efficiency vs. Output Power ($V_s = 24 \text{ V}$).

APPLICATION INFORMATION

Figure 19: Application Circuit with Bootstrap.

^{*} R4 is necessary when Vs is less than 10 V.

Figure 20: P.C. Board and Component Layout of the Circuit of Fig. 19 (1:1 scale).

Figure 21 : Application Circuit without Bootstrap.

Figure 22 : Output Power vs. Supply Voltage (circuit of fig. 21).

Figure 23: Position Control for Car Headlights.

APPLICATION SUGGESTION

The recommended values of the external components are those shown on the application circuit of fig. 19.

When the supply voltage V_s is less than 10 V, a 100 Ω resistor must be connected between pin 1 and pin 4 in order to obtain the maximum output power.

Different values can be used. The following table can help the designer.

	Raccom.		Larger than	Smaller than	Allowed Range		
Component	Value	Purpose	Raccomanded Value	Raccomanded Value	Min.	Max.	
R ₁	10 ΚΩ	Close Loop Gain Setting.	Increase of Gain.	Decrease of Gain. Increase Quiescent Current.	9 R ₂		
R ₂	100 Ω	Close Loop Gain Setting.	Decrease of Gain.	Increase of Gain.		R ₁ /9	
R ₃	1 Ω	Frequency Stability	Danger of Oscillation at High Frequencies with Inductive Loads.				
R ₄	100 Ω	Increasing of Output Swing with Low V _s .			47 Ω	330 Ω	
C ₁	2.2 μF	Input DC Decoupling.	Lower Noise	Higher Low Frequency Cutoff. Higher Noise.	0.1 μF		
C ₂	0.1 μF	Supply Voltage Bypass.		Danger of Oscillations.			
C ₃	2.2 μF	Inverting Input DC Decoupling.	Increase of the Switch-on Noise	Higher Low Frequency Cutoff.	0.1 μF		
C4	10 μF	Ripple Rejection.	Increase of SVR. Increase of the Switch-on Time.	Degradation of SVR.	2.2 μF	100 μF	
C ₅	47 μF	Bootstrap		Increase of the Distortion at Low Frequency	10 μF	100 μF	
C ₆	0.22 μF	Frequency Stability		Danger of Oscillation			
C ₇	1000 μF	Output DC Decoupling.		Higher Low Frequency Cutoff.			

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

- An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_j cannot be higher than 150 °C.
- 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.

If, for any reason, the junction temperature increase up to 150 °C, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 26 shows the dissipable power as a function of ambient temperature for different thermal resistance.

Figure 24 : Output Power and Drain Current vs. Case Temperature.

Figure 26 : Maximum Power Dissipation vs.
Ambient Temperature.

Figure 25 : Output Power and Drain Curent vs. Case Temperature.

MOUNTING INSTRUCTIONS

The thermal power dissipated in the circuit may be removed by soldering the tabs to a copper area on the PC board (see fig. 27).

During soldering, tab temperature must not exceed 260 °C and the soldering time must not be longer than 12 seconds.

Figure 27: Mounding Example.

Figure 28: Maximum Power Dissipation and Thermal Resistance vs. Side ""."

