10W AUDIO AMPLIFIER WITH MUTING - MUTING FACILITY - PROTECTION AGAINST CHIP OVER TEM-PERATURE - VERY LOW NOISE - HIGH SUPPLY VOLTAGE REJECTION - LOW "SWITCH-ON" NOISE The TDA1910 is assembled in MULTIWATT® package that offers: - EASY ASSEMBLY - SIMPLE HEATSINK - SPACE AND COST SAVING - HIGH RELIABILITY. #### DESCRIPTION The TDA1910 is a monolithic integrated circuit in MULTIWATT® package, intended for use in Hi-Fi audio power applications, as high quality TV sets. The TDA1910 meets the DIN 45500 (d = 0.5 %) guaranteed output power of 10 W when used at $24V/4\Omega$ At $24V/8\Omega$ the output power is 7W min. ### PIN CONNECTION (top view) ## **TEST CIRCUIT** ## SCHEMATIC DIAGRAM #### **TEST CIRCUIT** ### MUTING CIRCUIT ## **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |-----------------------------------|---|-----------------------|------| | Vs | Supply Voltage | 30 | V | | I _o | Output Peak Current (non repetitive) | 3.5 | Α | | I _o | Output Peak Current (repetitive) | 3.0 | Α | | Vi | Input Voltage | 0 to + V _s | V | | Vi | Differential Input Voltage | ± 7 | V | | V ₁₁ | Muting Threshold Voltage | Vs | V | | P _{tot} | Power Dissipattion at T _{case} = 90 °C | 20 | W | | T _{stg} , T _j | Storage and Junction Temperature | - 40 to 150 | °℃ | #### THERMAL DATA | _ | | | | | |---------------------|----------------------------------|-----|---|------| | R _{th i-c} | Thermal Resistance Junction-case | Max | 3 | °C/W | **ELECTRICAL CHARACTERISTICS** (refer to the test circuit, $T_{amb} = 25$ °C, R_{th} (heastsink) = 4 °C/W, unless otherwisse specified) | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |---------------------|---------------------------------|---|----------------|-------------------|------------|------| | Vs | Supply Voltage | | 8 | | 30 | V | | Vo | Quiescent Output Voltage | V _s = 18 V
V _s = 24 V | 8.3
11.5 | 9.2
12.4 | 10
13.4 | V | | I _d | Quiescent Drain Current | V _s = 18 V
V _s = 24 V | | 19
21 | 32
35 | mA | | V _{CE sat} | Output Stage Saturation Voltage | I _C = 2 A | | 1 | | V | | | Voltage | I _C = 3 A | | 1.6 | | | | Po | Output Power | $\begin{array}{lll} d = 0.5 \ \% & f = 40 \ to \ 15, \ 000 \ Hz \\ V_S = 18 \ V & R_L = 4 \ \Omega \\ V_S = 24 \ V & R_L = 4 \ \Omega \\ V_S = 24 \ V & R_L = 8 \ \Omega \end{array}$ | 6.5
10
7 | 7
12
7.5 | | W | | | | | 8.5
15
9 | 9.5
17
10 | | W | | d | Harmonic Distortion | $ f = 40 \text{ to } 15,000 \text{ Hz} $ $V_s = 18 \text{ V} \qquad R_L = 4 \Omega $ $P_0 = 50 \text{ mW to } 6.5 \text{ W} $ $V_s = 24 \text{ V} \qquad R_L = 4 \Omega $ $P_0 = 50 \text{ mW to } 10 \text{ W} $ $V_s = 24 \text{ V} \qquad R_L = 8 \Omega $ | | 0.2 | 0.5 | % | | | | $P_o = 50 \text{ mW to } 7 \text{ W}$ | | 0.2 | 0.5 | | | d | Intermodulation Distortion | $V_s = 24 \text{ V R}_L = 4 \Omega \text{ P}_o = 10 \text{ W} \\ f_1 = 250 \text{ Hz} & f_2 = 8 \text{ kHz} \\ & (\text{DIN 45500}) \\ \end{array}$ | | 0.2 | | % | | Vi | Input Sensitivity | | | 170
220
245 | | mV | | Vi | Input Saturation Voltage (rms) | V _S = 18 V
V _S = 24 V | 1.8
2.4 | | | ٧ | # **ELECTRICAL CHARACTERISTICS** (continued) | Symbol | Parameter | Test Conditions | | Min. | Typ. | Max. | Unit | |----------------|---------------------------------------|---|---|----------------|-------------------|-------------------|------| | R, | Input Resistance (pin 5) | f = 1 kHz | | 60 | 100 | | kΩ | | 1 _d | Drain Current | $V_{s} = 24 V$ $R_{L} = 4 \Omega$ $R_{L} = 8 \Omega$ | f = 1 kHz
P _o = 12 W
P _o = 7.5 W | | 820
475 | | mA | | η | Efficiency | $R_L = 4 \Omega$ | f = 1 kHz
P _o = 12 W
P _o = 7.5 W | | 62
65 | | % | | BW | Small Signal Bandwidth | V _s = 24 V R _L = | $4 \Omega P_0 = 1 W$ | 10 to 120, 000 | | | Hz | | BW | Power Bandwidth | $V_s = 24 V$
$P_o = 12 W$ | $R_L = 4 \Omega$
d $\leq 0.5 \%$ | 40 to 15. 000 | | Hz | | | Gv | Voltage Gain (open loop) | f = 1 kHz | | | 75 | | dB | | Gv | Voltage Gain (closed loop) | V _s = 24 V
f = 1 kHz | $R_L = 4 \Omega$
$P_0 = 1 W$ | 29.5 | 30 | 30.5 | dB | | en | Total Input Noise | | $R_g = 50 \Omega$
$R_g = 1 k\Omega$ (°)
$R_g = 10 k\Omega$ | | 1.2
1.3
1.5 | 3.0
3.2
4.0 | μV | | | | | $R_g = 50 \Omega$
$R_g = 1 k\Omega (^{\circ \circ})$
$R_g = 10 k\Omega$ | | 2.0
2.0
2.2 | 5.0
5.2
6.0 | μV | | S/N | F | V _s = 24 V
P _o = 12 W | $R_g = 10 \text{ k}\Omega$ $R_g = 0$ | 97 | 103
105 | | dB | | | | $R_L = 4 \Omega$ | $R_g = 10 \text{ k}\Omega$
$R_g = 0$ | 93 | 100
100 | | dB | | SVR | Supply Voltage Rejection | V _s = 24 V
f _{ripple} = 100 Hz | $R_L = 4 \Omega$
$R_g = 10 k\Omega$ | 50 | 60 | | dB | | T_{sd} | Thermal Shut-down CaseTemperature (*) | | P _{tot} = 8 W | 110 | 125 | | °C | # MUTING FUNCTION (refer to muting circuit) | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |-----------------|---------------------------------------|----------------------------------|------|------|------|------| | V _T | Muting-off Threshold Voltage (pin 11) | | 1.9 | | 4.7 | V | | V _T | Muting-on Threshold Voltage | | 0 | | 1.3 | | | | (pin 11) | | 6 | | Vs | V | | R ₁ | Input Resistance (pin 1) | Muting Off | 80 | 200 | | kΩ | | | | Muting On | | 10 | 30 | Ω | | R ₁₁ | Input Resistance (pin 11) | | 150 | | | kΩ | | A _T | Muting Attenuation | $R_g + R_1 = 10 \text{ k}\Omega$ | 50 | 60 | | dB | Note: (*) Weighting filter = curve A. (*) Filter with noise bandwidth: 22 Hz to 22 kHz. (*) See fig.29 and fig.30. Figure 1 : Quiescent Output Voltage vs. Supply Voltage. Figure 3: Open Loop Frequency Response. Figure 5: Output Power vs. Supply Voltage. Figure 2 : Quiescent Drain Current vs. Supply Voltage. Figure 4: Output Power vs. Supply Voltage. Figure 6: Distortion vs. Output Power. Figure 7: Distortion vs. Output Power. Figure 9: Output Power vs. Frequency. Figure 11: Output Power vs. Input Voltage. Figure 8 : Output Power vs. Frequency. Figure 10 : Output Power vs. Input Voltage. Figure 12 : Total Input Noise vs. Source Resistance. Figure 13: Values of Capacitor C_X vs. Bandwidth (BW) and Gain (G_V). Figure 15 : Supply Voltage Rejection vs. Source Resistance. Figure 17: Power Dissipation and Efficiency vs. Output Power. Figure 14 : Supply Voltage Rejection vs. Voltage Gain. Figure 16 : Power Dissipation and Efficiency vs. Output Power. Figure 18: Max Power Dissipation vs. Supply Voltage. ### APPLICATION INFORMATION Figure 19: Application Circuit without Muting. Figure 20: P.C. Board and Component layout of the Circuit of Fig.19 (1:1 scale). Figure 21: Application Circuit with Muting. Figure 22: Two Position DC Tone Control (10dB boost 50Hz and 20kHz) using Change of Pin 1 Resistance (muting function). Figure 23: 10dB 50Hz Boost Tone Control using Change of Pin 1 Resistance (muting function). Figure 24 : Frequency Response of the Circuit of fig.22 Figure 25 : Frequency Response of the Circuit of fig.23 Figure 26 : Squelch Function in TV Applications. Figure 27: Delayed Muting Circuit. ## MUTING FUNCTION The output signal can be inhibited applying a DC voltage VT to pin 11, as shown in fig.28. Figure 28. The input resistance at pin 1 depends on the threshold voltage V_T at pin 11 and is typically. $$R_1 = 200 \text{ k}\Omega$$ @ $$1.9 \text{ V} \leq \text{V}_T \leq 4.7 \text{ V}$$ muting-off $$R1 = 10\Omega$$ $$0 \text{ V} \leq \text{V}_{\text{T}} \leq 1.3 \text{ V}$$ $$6 \text{ V} \leq \text{V}_T \leq \text{V}_S$$ muting-on Referring to the following input stage, the possible attenuation of the input signal and therefore of the output signal can be found using the following expression. $$A_T = \frac{V_i}{V_5} = \frac{R_g + R_5//R_1}{R_5//R_1}$$ where R5 = $100k\Omega$ Considering $R_g=10~k\Omega$ the attenuation in the muting-on condition is typically $A_T=60~\text{dB}.$ In the muting-off condition, the attenuation is very low, typically 1.2 dB. A very low current is necessary to drive the threshold voltage V_T because the input resistance at pin 11 is greater than 150 K Ω . The muting function can be used in many cases, when a temporary inhibition of the output signal is requested, for example : - in switch-on condition, to avoid preamplifier poweron transients (see fig. 27). - during commutations at the input stages. - during the receiver tuning. The variable impedance capability at pin 1 can be useful in many applications and we have shown 2 examples in fig. 22 and 24, where it has been used to change the feedback network, obtaining 2 different frequency responses. ## **APPLICATION SUGGESTION** The recommended values of the components are those shown on application circuit of fig. 21. Different values can be used. The following table can help the designer. | | | Purpose | Larger Than | Smaller Than | Allowed Range | | | |--|---|---|---|---|------------------|-------------------|--| | Component | Recomm. Value | | Recommanded
Value | Recommanded
Value | Min. | Тур. | | | R _g + R ₁ | 10 kΩ | Input Signal
Imped. for
Muting
Operation | Increase of the
Attenuation in
Muting-on
Condition. Decrease
of the Input
Sensitivity. | Decrease of the
Attenuation in
Muting on Condition | | | | | R ₂ | 3.3 kΩ | Closed Loop
Gain Setting | Increase of Gain | Decrease of Gain
Increase Quiescent
Current | 9 R ₃ | | | | R ₃ | 100 Ω | Close Loop Gain
Setting | Decrease of Gain | Increase of Gain | | R ₂ /9 | | | R ₄ | 1 Ω | Frequency
Stability | Danger of
Oscillation at High
Frequencies with
Inductive Loads | | | | | | P ₁ | 20 kΩ | Volume
Potentiometer | Increase of the
Switch-on Noise | Decrease of the
Input Impedance
and The Input Level | 10 kΩ | 100 kΩ | | | C ₁
C ₂
C ₃ | 1 μF
1 μF
0.22 μF | Input DC
Decoupling | | Higher Low
Frequency Cutoff | | | | | C ₄ | 2.2 μF | Inverting Input
DC Decoupling | Increase of the
Switch-on Noise | Higher Low
Frequency Cutoff | 0.1 μF | | | | C ₅ | 0.1 μF | Supply Voltage
Bypass | | Danger of
Oscillations | | | | | C ₆ | 10 μF | Ripple Rejection | Increase of SVR
Increase of the
Switch-on Time | Degradation of SVR | 2.2 μF | 100 μF | | | C ₇ | 47 μF | Boostrap. | | Increase of the
Distortion at Low
Frequency | 10 μF | 100 μF | | | C ₈ | 0.22 μF | Frequency
Stability | | Danger of
Oscillation | | | | | C ₉ | $\begin{array}{c} 2200 \; \mu F \\ (R_L = 4 \; \Omega) \\ 1000 \; \mu F \\ (R_L = 8 \; \Omega) \end{array}$ | Output DC
Decoupling | | Higher Low
Frequency Cutoff | | | | #### THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: - An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_j cannot be higher than 150° C. - 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. Figure 29 : Output Power and Drain Current vs. Case Temperature. If for any reason, the junction temperature increases up to 150 °C, the thermal shut-down simply reduces the power dissipation and the current consumption. The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 31 shows this dissipable power as a function of ambient temperature for different thermal resistance. Figure 30 : Output Power and Drain Current vs. Case Temperature. Figure 31 : Maximum allowable Power Dissipa tion vs . Ambient Temperature. ## MOUNTING INSTRUCTIONS The power dissipated in the circuit must be removed by adding an external heatsink. Thanks to the Multiwatt ® package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.