

10W AUDIO AMPLIFIER WITH MUTING

- MUTING FACILITY
- PROTECTION AGAINST CHIP OVER TEM-PERATURE
- VERY LOW NOISE
- HIGH SUPPLY VOLTAGE REJECTION
- LOW "SWITCH-ON" NOISE

The TDA1910 is assembled in MULTIWATT® package that offers:

- EASY ASSEMBLY
- SIMPLE HEATSINK
- SPACE AND COST SAVING
- HIGH RELIABILITY.

DESCRIPTION

The TDA1910 is a monolithic integrated circuit in MULTIWATT® package, intended for use in Hi-Fi audio power applications, as high quality TV sets.

The TDA1910 meets the DIN 45500 (d = 0.5 %) guaranteed output power of 10 W when used at $24V/4\Omega$ At $24V/8\Omega$ the output power is 7W min.

PIN CONNECTION (top view)

TEST CIRCUIT

SCHEMATIC DIAGRAM

TEST CIRCUIT

MUTING CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	30	V
I _o	Output Peak Current (non repetitive)	3.5	Α
I _o	Output Peak Current (repetitive)	3.0	Α
Vi	Input Voltage	0 to + V _s	V
Vi	Differential Input Voltage	± 7	V
V ₁₁	Muting Threshold Voltage	Vs	V
P _{tot}	Power Dissipattion at T _{case} = 90 °C	20	W
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°℃

THERMAL DATA

_				
R _{th i-c}	Thermal Resistance Junction-case	Max	3	°C/W

ELECTRICAL CHARACTERISTICS (refer to the test circuit, $T_{amb} = 25$ °C, R_{th} (heastsink) = 4 °C/W, unless otherwisse specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		8		30	V
Vo	Quiescent Output Voltage	V _s = 18 V V _s = 24 V	8.3 11.5	9.2 12.4	10 13.4	V
I _d	Quiescent Drain Current	V _s = 18 V V _s = 24 V		19 21	32 35	mA
V _{CE sat}	Output Stage Saturation Voltage	I _C = 2 A		1		V
	Voltage	I _C = 3 A		1.6		
Po	Output Power	$\begin{array}{lll} d = 0.5 \ \% & f = 40 \ to \ 15, \ 000 \ Hz \\ V_S = 18 \ V & R_L = 4 \ \Omega \\ V_S = 24 \ V & R_L = 4 \ \Omega \\ V_S = 24 \ V & R_L = 8 \ \Omega \end{array}$	6.5 10 7	7 12 7.5		W
			8.5 15 9	9.5 17 10		W
d	Harmonic Distortion	$ f = 40 \text{ to } 15,000 \text{ Hz} $ $V_s = 18 \text{ V} \qquad R_L = 4 \Omega $ $P_0 = 50 \text{ mW to } 6.5 \text{ W} $ $V_s = 24 \text{ V} \qquad R_L = 4 \Omega $ $P_0 = 50 \text{ mW to } 10 \text{ W} $ $V_s = 24 \text{ V} \qquad R_L = 8 \Omega $		0.2	0.5	%
		$P_o = 50 \text{ mW to } 7 \text{ W}$		0.2	0.5	
d	Intermodulation Distortion	$V_s = 24 \text{ V R}_L = 4 \Omega \text{ P}_o = 10 \text{ W} \\ f_1 = 250 \text{ Hz} & f_2 = 8 \text{ kHz} \\ & (\text{DIN 45500}) \\ \end{array}$		0.2		%
Vi	Input Sensitivity			170 220 245		mV
Vi	Input Saturation Voltage (rms)	V _S = 18 V V _S = 24 V	1.8 2.4			٧

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
R,	Input Resistance (pin 5)	f = 1 kHz		60	100		kΩ
1 _d	Drain Current	$V_{s} = 24 V$ $R_{L} = 4 \Omega$ $R_{L} = 8 \Omega$	f = 1 kHz P _o = 12 W P _o = 7.5 W		820 475		mA
η	Efficiency	$R_L = 4 \Omega$	f = 1 kHz P _o = 12 W P _o = 7.5 W		62 65		%
BW	Small Signal Bandwidth	V _s = 24 V R _L =	$4 \Omega P_0 = 1 W$	10 to 120, 000			Hz
BW	Power Bandwidth	$V_s = 24 V$ $P_o = 12 W$	$R_L = 4 \Omega$ d $\leq 0.5 \%$	40 to 15. 000		Hz	
Gv	Voltage Gain (open loop)	f = 1 kHz			75		dB
Gv	Voltage Gain (closed loop)	V _s = 24 V f = 1 kHz	$R_L = 4 \Omega$ $P_0 = 1 W$	29.5	30	30.5	dB
en	Total Input Noise		$R_g = 50 \Omega$ $R_g = 1 k\Omega$ (°) $R_g = 10 k\Omega$		1.2 1.3 1.5	3.0 3.2 4.0	μV
			$R_g = 50 \Omega$ $R_g = 1 k\Omega (^{\circ \circ})$ $R_g = 10 k\Omega$		2.0 2.0 2.2	5.0 5.2 6.0	μV
S/N	F	V _s = 24 V P _o = 12 W	$R_g = 10 \text{ k}\Omega$ $R_g = 0$	97	103 105		dB
		$R_L = 4 \Omega$	$R_g = 10 \text{ k}\Omega$ $R_g = 0$	93	100 100		dB
SVR	Supply Voltage Rejection	V _s = 24 V f _{ripple} = 100 Hz	$R_L = 4 \Omega$ $R_g = 10 k\Omega$	50	60		dB
T_{sd}	Thermal Shut-down CaseTemperature (*)		P _{tot} = 8 W	110	125		°C

MUTING FUNCTION (refer to muting circuit)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _T	Muting-off Threshold Voltage (pin 11)		1.9		4.7	V
V _T	Muting-on Threshold Voltage		0		1.3	
	(pin 11)		6		Vs	V
R ₁	Input Resistance (pin 1)	Muting Off	80	200		kΩ
		Muting On		10	30	Ω
R ₁₁	Input Resistance (pin 11)		150			kΩ
A _T	Muting Attenuation	$R_g + R_1 = 10 \text{ k}\Omega$	50	60		dB

Note: (*) Weighting filter = curve A.
(*) Filter with noise bandwidth: 22 Hz to 22 kHz.
(*) See fig.29 and fig.30.

Figure 1 : Quiescent Output Voltage vs. Supply Voltage.

Figure 3: Open Loop Frequency Response.

Figure 5: Output Power vs. Supply Voltage.

Figure 2 : Quiescent Drain Current vs. Supply Voltage.

Figure 4: Output Power vs. Supply Voltage.

Figure 6: Distortion vs. Output Power.

Figure 7: Distortion vs. Output Power.

Figure 9: Output Power vs. Frequency.

Figure 11: Output Power vs. Input Voltage.

Figure 8 : Output Power vs. Frequency.

Figure 10 : Output Power vs. Input Voltage.

Figure 12 : Total Input Noise vs. Source Resistance.

Figure 13: Values of Capacitor C_X vs.
Bandwidth (BW) and Gain (G_V).

Figure 15 : Supply Voltage Rejection vs. Source Resistance.

Figure 17: Power Dissipation and Efficiency vs. Output Power.

Figure 14 : Supply Voltage Rejection vs. Voltage Gain.

Figure 16 : Power Dissipation and Efficiency vs.
Output Power.

Figure 18: Max Power Dissipation vs. Supply Voltage.

APPLICATION INFORMATION

Figure 19: Application Circuit without Muting.

Figure 20: P.C. Board and Component layout of the Circuit of Fig.19 (1:1 scale).

Figure 21: Application Circuit with Muting.

Figure 22: Two Position DC Tone Control (10dB boost 50Hz and 20kHz) using Change of Pin 1 Resistance (muting function).

Figure 23: 10dB 50Hz Boost Tone Control using Change of Pin 1 Resistance (muting function).

Figure 24 : Frequency Response of the Circuit of fig.22

Figure 25 : Frequency Response of the Circuit of fig.23

Figure 26 : Squelch Function in TV Applications.

Figure 27: Delayed Muting Circuit.

MUTING FUNCTION

The output signal can be inhibited applying a DC voltage VT to pin 11, as shown in fig.28.

Figure 28.

The input resistance at pin 1 depends on the threshold voltage V_T at pin 11 and is typically.

$$R_1 = 200 \text{ k}\Omega$$

@
$$1.9 \text{ V} \leq \text{V}_T \leq 4.7 \text{ V}$$

muting-off

$$R1 = 10\Omega$$

$$0 \text{ V} \leq \text{V}_{\text{T}} \leq 1.3 \text{ V}$$

$$6 \text{ V} \leq \text{V}_T \leq \text{V}_S$$

muting-on

Referring to the following input stage, the possible attenuation of the input signal and therefore of the output signal can be found using the following expression.

$$A_T = \frac{V_i}{V_5} = \frac{R_g + R_5//R_1}{R_5//R_1}$$

where R5 = $100k\Omega$

Considering $R_g=10~k\Omega$ the attenuation in the muting-on condition is typically $A_T=60~\text{dB}.$ In the muting-off condition, the attenuation is very low, typically 1.2 dB.

A very low current is necessary to drive the threshold voltage V_T because the input resistance at pin 11 is greater than 150 K Ω . The muting function can be used in many cases, when a temporary inhibition of the output signal is requested, for example :

- in switch-on condition, to avoid preamplifier poweron transients (see fig. 27).
- during commutations at the input stages.
- during the receiver tuning.

The variable impedance capability at pin 1 can be useful in many applications and we have shown 2 examples in fig. 22 and 24, where it has been used to change the feedback network, obtaining 2 different frequency responses.

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 21. Different values can be used.

The following table can help the designer.

		Purpose	Larger Than	Smaller Than	Allowed Range		
Component	Recomm. Value		Recommanded Value	Recommanded Value	Min.	Тур.	
R _g + R ₁	10 kΩ	Input Signal Imped. for Muting Operation	Increase of the Attenuation in Muting-on Condition. Decrease of the Input Sensitivity.	Decrease of the Attenuation in Muting on Condition			
R ₂	3.3 kΩ	Closed Loop Gain Setting	Increase of Gain	Decrease of Gain Increase Quiescent Current	9 R ₃		
R ₃	100 Ω	Close Loop Gain Setting	Decrease of Gain	Increase of Gain		R ₂ /9	
R ₄	1 Ω	Frequency Stability	Danger of Oscillation at High Frequencies with Inductive Loads				
P ₁	20 kΩ	Volume Potentiometer	Increase of the Switch-on Noise	Decrease of the Input Impedance and The Input Level	10 kΩ	100 kΩ	
C ₁ C ₂ C ₃	1 μF 1 μF 0.22 μF	Input DC Decoupling		Higher Low Frequency Cutoff			
C ₄	2.2 μF	Inverting Input DC Decoupling	Increase of the Switch-on Noise	Higher Low Frequency Cutoff	0.1 μF		
C ₅	0.1 μF	Supply Voltage Bypass		Danger of Oscillations			
C ₆	10 μF	Ripple Rejection	Increase of SVR Increase of the Switch-on Time	Degradation of SVR	2.2 μF	100 μF	
C ₇	47 μF	Boostrap.		Increase of the Distortion at Low Frequency	10 μF	100 μF	
C ₈	0.22 μF	Frequency Stability		Danger of Oscillation			
C ₉	$\begin{array}{c} 2200 \; \mu F \\ (R_L = 4 \; \Omega) \\ 1000 \; \mu F \\ (R_L = 8 \; \Omega) \end{array}$	Output DC Decoupling		Higher Low Frequency Cutoff			

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages:

- An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the T_j cannot be higher than 150° C.
- 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature.

Figure 29 : Output Power and Drain Current vs.
Case Temperature.

If for any reason, the junction temperature increases up to 150 °C, the thermal shut-down simply reduces the power dissipation and the current consumption.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 31 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Figure 30 : Output Power and Drain Current vs. Case Temperature.

Figure 31 : Maximum allowable Power Dissipa tion vs . Ambient Temperature.

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.

Thanks to the Multiwatt ® package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.