

10 + 10 W HIGH QUALITY STEREO AMPLIFIER

- HIGH OUTPUT POWER (10 + 10 W min. @ d = 0.5 %
- HIGH CURRENT CAPABILITY (up to 3.5 A)
- THERMAL OVERLOAD PROTECTION
- SPACE AND COST SAVING : VERY LOW MULTIWATT® PACKAGE.

NUMBER OF EXTERNAL COMPONENTS AND SIMPLE MOUNTING THANKS TO THE **MULTIWATT-11** DESCRIPTION The TDA2009 is class AB dual Hi-Fi Audio power ORDER CODE: TDA2009 amplifier assembled in Multiwatt ® package, specially designed for high quality stereo application as Hi-Fi and music centers.

TEST CIRCUIT

PIN CONNECTION (top view)

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	28	V
Io	Output Peak Current (repetitive f > 20 Hz)	3.5	Α
10	Output Peak Current (non repetitive, t = 100 μs)	4.5	Α
Ptot	Power Dissipation at T _{case} = 90 °C	20	W
T _{stg} , T _i	Storage and Junction Temperature	- 40 to 150	°C

THERMAL DATA

Rth I-cas	Thermal Resistance Junction-case	Max	3	°C/W

ELECTRICAL CHARACTERISTICS (refer to the stereo application circuit, T_{amb} = 25 °C, V_s = 23 V, G_v = 36 dB, unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage			8		28	V
Vo	Quiescent Output Voltage	V _s = 23 V		11		V	
Id	Total Quiescent Drain Current	V _s = 23 V		55	120	mA	
Po	Output Power (each channel)	f = 50 Hz to 1 d = 0.5 % V _s = 23 V V _s = 18 V	6 KHz $\begin{aligned} R_L &= 4 \ \Omega \\ R_L &= 8 \ \Omega \\ R_L &= 4 \ \Omega \\ R_L &= 8 \ \Omega \end{aligned}$	10 5.5	11 6.5 6.5 4		W W W
d	Distortion (each channel)				0.05		%
CT	Cross Talk (°°°)	R _L = ∞	f = 1 KHz	50	65		dB
		$R_g = 10 \text{ K}\Omega$	f = 10 KHz	40	50		dB
Vi	Input Saturation Voltage (rms)			300			mV
Ri	Input Resistance	f = 1 KHz Non Inverting Input		70	200		ΚΩ
fL	Low Frequency Roll off (- 3 dB)	R _L = 4 Ω			20		Hz
fH	High Frenquency Roll off (- 3dB)				80		KHz
Gv	Voltage Gain (closed loop)	f = 1 KHz		35.5	36	36.5	dB
ΔG _ν	Closed Loop Gain Matching				0.5		dB
e _N	Total Input Noise Voltage	$R_g = 10 \text{ K}\Omega$ (°)		1.5		μV
		$R_g = 10 \text{ K}\Omega$ (°)		2.5	8	μV
SVR	Supply Voltage Rejection (each channel)	$R_g = 10 \text{ K}\Omega$ $f_{ripple} = 100 \text{ Hz}$ $V_{ripple} = 0.5 \text{ V}$		43	55		dB
TJ	Thermal Shut-down Junction Temperature				145		°C

^(°) Curve A.

(°°°) Optimized test box

^{(°°) 22} Hz to 22 KHz.

Figure 1: Test and Application Circuit (Gv = 36 dB).

Figure 2: P.C. Board and Components Layout of the Circuit of Fig. 1 (1:1 scale).

Figure 3 : Output Power vs. Supply Voltage.

Figure 5: Distortion vs. Output Power.

Figure 7: Quiescent Current vs. Supply Voltage.

Figure 4 : Output Power vs. Supply Voltage.

Figure 6: Distortion vs. Frequency.

Figure 8: Supply Voltage Rejection vs. Value of Capacitor C3.

Figure 9 : Supply Voltage Rejection vs. Frequency.

Figure 11: Total Power Dissipation and Efficiency vs. Output Power.

Figure 13: Output Power vs. Closed Loop Gain.

Figure 10 : Total Power Dissipation and Efficiency vs. Output Power.

Figure 12: Cross-talk vs. Frequency.

Figure 14: Output Power vs. Closed Loop Gain.

APPLICATION INFORMATION

Figure 15: Simple Short-circuit Protection.

Figure 16: Example of Muting Circuit.

Figure 17: 10 + 10 W Stereo Amplifier with Tone Balance and Loudness Control.

APPLICATION INFORMATION

Figure 18: Tone Control Response (circuit of fig. 17).

Figure 19: High Quality 10 + 20 W Two Way Amplifier for Stereo Music Center (one channel only).

APPLICATION INFORMATION (continued)

Figure 20: 18 W Bridge Amplifier (d = 0.5 %, $G_v = 40 dB$).

Figure 21: P.C. Board and Components Layout of the Circuit of Fig. 20 (1:1 scale).

APPLICATION SUGGESTION

The recommended values of the components are those shown on application circuit of fig. 1. Different values can be used; the following table can help the designer.

Component	Recomm. Value	Purpose	Larger Than	Smaller Than
R1 and R3	1.2 ΚΩ	01 - 1 0 0 - 11 (4)	Increase of Gain	Decrease of Gain
R2 and R4	18 Ω	Close Loop Gain Setting (*)	Decrease of Gain	Increase of Gain
R5 and R6	1 Ω	Frequency Stability	Danger of Oscillation at High Frequency with Inductive Load	
C1 and C2	2.2 μF	Input DC Decoupling	High Turn-on Delay	High Turn-on Pop Higher Low Frequency Cutoff. Increase of Noise
C3	22 μF	Ripple Rejection	Better SVR. Increase of the Switch-on Time	Degradation of SVR
C6 and C7	220 μF	Feedback Input DC Decoupling		
C8 and C9	0.1 μF	Frenquency Stability		Danger of Oscillation
C10 and C11	1000 μF to 2200 μF	Output DC Decoupling		Higher Low-frequency Cut-off

^(*) The closed loop gain must be higher than 26 dB

BUILT-IN PROTECTION SYSTEMS

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages :

- an overload on the output (even it is permanent), or an excessive ambient temperature can be easily withstood.
- 2)the heatsink can have a smaller factor of safety compared with that of a conventional circuits.

Figure 22 : Maximum Allowable Power
Dissipation vs. Ambient Temperature.

There is no device damage in the case of excessive junction temperature : all that happens is that P_o (and therefore P_{tot}) and I_d are reduced.

The maximum allowable power dissipation depends upon the size of the external heatsink (i.e. its thermal resistance); fig. 22 shows this dissipable power as a function of ambient temperature for different thermal resistance.

Figure 23 : Output Power vs. Case Temperature.

MOUNTING INSTRUCTIONS

The power dissipated in the circuit must be removed by adding an external heatsink.

Thanks to the MULTIWATT [®] package attaching the heatsink is very simple, a screw or a compression spring (clip) being sufficient. Between the

heatsink and the package it is better to insert a layer of silicon grease, to optimize the thermal contact; no electrical isolation is needed between the two surfaces.

