SGS-THOMSON MICROELECTRONICS

TDA2040

20 W Hi-Fi AUDIO POWER AMPLIFIER

DESCRIPTION

The TDA2040 is a monolithic integrated circuit in Pentawatt package, intended for use as an audio class AB amplifier. Typically it provides 22 W output power (d = 0.5 %) at V_s = 32 V/4\Omega. The TDA2040 provides high output current and has very low harmonic and cross-over distortion. Further the device incorporates a patented short circuit protection system comprising an arrangement for automatically limiting the dissipated power so as to keep the working point of the output transistors within their safe operating area. A thermal shut-down system is also included.

PIN CONNECTION (top view)

TDA2040

TEST CIRCUIT

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	± 20	V
V,	Input Voltage	Vs	
V,	Differential Input Voltage	± 15	V
1.	Output Peak Current (internally limited)	4	A
Ptot	Power Dissipation at T _{case} = 75 °C	25	W
T _{stg} , T _j	Storage and Junction Temperature	- 40 to 150	°C

THERMAL DATA

Rth J-case	Thermal Resistance Junction-case	Max	3	°C/W
				the second s

Symbol	Parameter	Test Co	onditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage			± 2.5		± 20	V
ld	Quiescent Drain Current	$V_s = \pm 4.5 V$				30	mA
					45	100	mA
l _b	Input Bias Current	V _s = ± 20 V			0.3	1	μA
Vos	Input Offset Voltage				± 2	± 20	mV
los	Input Offset Current					± 200	nA
Po	Output Power	d = 0.5 % f = 1 kHz	$T_{case} = 60 \ ^{\circ}C$ $R_{L} = 4 \ \Omega$ $R_{L} = 8 \ \Omega$	20	22 12		w
		f = 15 kHz	$R_L = 4 \Omega$	15	18		W
BW	Power Bandwidth	$P_0 = 1 W$	$R_L = 4 \Omega$		100		kHz
Gv	Open Loop Voltage Gain	f – 1 kHz			80		dB
Gv	Closed Loop Voltage Gain	· · · · · · · ·		29.5	30	30.5	dB
d	Total Harmonic Distortion	$P_{o} = 0.1 \text{ to } 10 \text{ W}$	$R_{L} = 4 \Omega$ f = 40 to 15000Hz f = 1 kHz		0.08 0.03		%
e _N	Input Noise Voltage	B = Curve A			2		μV
		B = 22 Hz to 22 k	Hz		3	10	μν
IN	Input Noise Current	B = Curve A			50		٥A
		B = 22 Hz to 22 k	Hz		80	200	PO
Ri	Input Resistance (pin 1)			0.5	5		MΩ
SVR	Supply Voltage Rejection		G _v = 30 dB 1 = 100 Hz	40	50		dB
η	Efficiency	$f = 1 \text{ kHz}$ $P_o = 12 \text{ W}$ $P_o = 22 \text{ W}$	$R_{L} = 8 \Omega$ $R_{L} = 4 \Omega$		66 63		%
Т	Thermal Shut-down Junction Temperature				145		°C

ELECTRICAL CHARACTERISTICS (refer to the test circuit, $V_s = \pm 16$ V, $T_{amb} = 25$ °C unless otherwise specified)

G- 6032 RL = 4.0. POUT (W) Gy=30dB d = 0.5 % f = 1KHz 26 22 18 RL = 8.0. 14 10 6 2 7 9 11 13 ± v_a(v) 5 15

Figure 1 : Output Power vs. Supply Voltage.

Figure 3 : Output Power vs. Supply Voltage.

Figure 2 : Output Power vs. Supply Voltage.

Figure 4 : Distortion vs. Frequency.

Figure 6 : Supply Voltage Rejection vs. Voltage Gain.

Figure 7 : Quiescent Drain Current vs. Supply Voltage.

Figure 9 : Power Dissipation vs. Output Power

APPLICATION INFORMATION

Figure 10 : Amplifier with Split Power Supply (*).

SGS-THOMSON

MICROELECTROMICS

SF

TDA2040

APPLICATION INFORMATION (continued)

Figure 11 : P. C. Board and Components Layout for the Circuit of fig. 10 (1 : 1 scale).

Figure 12 : Amplifier with Single Supply (*).

APPLICATION INFORMATION (continued)

Figure 13 : P. C. Board and Components Layout for the Circuit of fig. 12 (1 : 1 scale).

Figure 14: 30 W Bridge Amplifier with Split Power Supply.

TDA2040

APPLICATION INFORMATION (continued)

Figure 15 : P. C. Board and Components Layout for the Circuit of fig. 14 (1 : 1 scale).

Figure 16 : Two Way Hi-Fi System with Active Crossver.

APPLICATION INFORMATION (continued)

Figure 17 : P. C. Board and Components Layout for the Circuit of fig. 16 (1 : 1 scale).

Figure 18 : Frequency Response.

Multiway Speaker Systems And Active Boxes

Multiway loudspeaker systems provide the best possible acoustic performance since each loudspeaker is specially designed and optimized to handle a limited range of frequencies. Commonly, these loudspeaker systems divide the audio spectrum into two, three or four bands.

To maintain a flat frequency response over the Hi-Fi audio range the bands covered by each loudspeaker must overlap slightly. Imbalance between the loudspeakers produces unacceptable results therefore it is important to ensure that each unit generates the correct amount of acoustic energy for its segment of the audio spectrum. In this respect it

Figure 19 : Power Distribution vs. Frequency.

is also important to know the energy distribution of the music spectrum determine the cutoff frequencies of the crossover filters (see fig. 19). As an example, a 100 W three-way system with crossover frequencies of 400 Hz and 3 KHz would require 50 W for the woofer, 35 W for the midrange unit and 15 W for the tweeter.

Both active and passive filters can be used for crossovers but today active filters cost significantly less than a good passive filter using air-cored inductors and non-electrolytic capacitors. In addition, active filters do not suffer from the typical defects of passive filters :

power loss

- increased impedance seen by the loudspeaker (lower damping)
- difficulty of precise design due to variable loudspeaker impedance

Obviously, active crossovers can only be used if a power amplifier is provided for each drive unit. This makes it particularly interesting and economically sound to use monolithic power amplifiers. In some applications, complex filters are not really necessary and simple RC low-pass and high-pass networks (6 dB/octave) can be recommended.

The results obtained are excellent because this is the best type of audio filter and the only one free from phase and transient distortion.

The rather poor out of band attenuation of single RC filters means that the loudspeaker must operate linearly well beyond the crossover frequency to avoid distortion.

A more effective solution, named "Active Power Filter" is shown in Fig. 20.

Figure 20 : Active Power Filter.

The proposed circuit can realize combined power amplifiers and 12 dB/octave or 18 dB/octave highpass or low-pass filters.

In practice, at the input pins of the amplifier two equal and in-phase voltages are available, as required for the active filter operation.

The impedance at the pin (-) is of the order of 100 Ω , while that of the pin (+) is very high, which is also what was wanted.

The component values calculated for $f_c=900\mbox{ Hz}$ using a Bessel 3rd order Sallen and Key structure are :

C1 = C2 = C3	R1	R 2	R 3
22 nF	8.2 kΩ	5.6 kΩ	33 kΩ

In the block diagram of Fig. 21 is represented an active loudspeaker system completely realized using power integrated circuit, rather than the traditional discrete transistors on hybrids, very high quality is obtained by driving the audio spectrum into three bands using active crossovers (TDA2320A) and a separate amplifier and loudspeakers for each band.

A modern subwoofer/midrange/tweeter solution is used.

SHORT CIRCUIT PROTECTION

The TDA2040 has an original circuit which limits the current of the output transistors. This function can be considered as being peak power limiting rather than simple current limiting. The TDA2030A is thus protected against temporary overloads or short circuit. Should the short circuit exist for a longer time the thermal shut down protection keeps the junction temperature within safe limits.

THERMAL SHUT-DOWN

The presence of a thermal limiting circuit offers the following advantages :

- An overload on the output (even if it is permanent), or an above limit ambient temperature can be easily supported since the Tj cannot be higher than 150°C.
- 2) The heatsink can have a smaller factor of safety compared with that of a conventional circuit. There is no possibility of device damage due to high junction temperature. If for any reason, the junction temperature increase up to 150°C, the thermal shut-down simply reduces the power dissipation and the current consumption.

PRATICAL CONSIDERATION

PRINTED CIRCUIT BOARD

The layout shown in Fig. 11 should be adopted by the designers. If different layouts are used, the ground points of input 1 and input 2 must be well decoupled from the gorund return of the output in which a high current flows.

ASSEMBLY SUGGESTION

No electrical isolation is needed between the package and the heatsink with single supply voltage configuration.

APPLICATION SUGGESTIONS

The recommended values of the components are those shown on application circuit of Fig. 10. Different values can be used. The following table can help the designer.

Figure 21 : High Pow	er Active Loudspeaker	System Using TDA	2030A and TDA2040.
----------------------	-----------------------	------------------	--------------------

Component	Recom. Value	Purpose	Larger Than Recommended Value	Smaller Than Recommended Value
R1	22 kΩ	Non Inverting Input Biasing	Increase of Input Impedance	Decrease of Input Impedance
R2	680 Ω	Closed Loop Gain Setting	Decrease of gain (*)	Increase of Gain
R3	22 kΩ	Closed Loop Gain Setting	Increase of Gain	Decrease of Gain (*)
R4	4.7 Ω	Frequency Stability	Danger of Oscillation at High Frequencies with Inductive Loads	
C1	1 μF	Input DC Decoupling		Increase of Low Frequencies Cutoff
C2	22 μF	Inverting DC Decoupling		Increase of Low Frequencies Cutoff
C3, C4	0.1 μF	Supply Voltage Bypass		Danger of Oscillation
C5, C6	220 μF	Supply Voltage Bypass		Danger of Oscillation
C7	0.1 μF	Frequency Stability		Danger of Oscillation

(*) The value of closed loop gain must be higher than 24 dB.

