TV VERTICAL DEFLECTION BOOSTER ADVANCE DATA - POWER AMPLIFIER - FLYBACK SUPPLY VOLTAGE SEPARATED - THERMAL PROTECTION - CURRENT LIMITED TO GND ## **DESCRIPTION** Designed for Monitors and high performance TV_S , the TDA8179F vertical deflection booster is able to work with a flyback voltage more than the double at V_S . The TDA8179F operates with supplies up to 50V, flyback supply voltage up to 100V and provides up to 2App output current to drive to yoke. The TDA8179F is offered in HEPTAWATT package. #### **BLOCK DIAGRAM** ## PIN CONNECTION (top view) ## **APPLICATION CIRCUIT** ## **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parameter | Value | Unit | |---------------------------------|--|------------------|------| | Vs | Supply Voltage (pin 2) | 50 | V | | VF | Flyback Supply Voltage | 100 | V | | V _F -V _s | Difference between Flyback Supply Voltage and Supply Voltage | 50 | V | | V ₁ , V ₇ | Amplifier Input Voltage | + V _s | | | 10 | Output Peak Current (non repetitive, t = 2ms) | 2 | Α | | I _O | Output Peak Current at f = 50 or 60Hz t ≤ 10µs | 2 | Α | | Io | Output Peak Current at f = 50 or 60Hz t > 10μs | 1.8 | Α | | 13 | Pin 3 Peak Flyback Current at f = 50 or 60Hz, t _{fly} ≤ 1.5ms | 1.8 | Α | | P _{tot} | Total Power Dissipation at T _{case} = 70°C | 20 | W | | T _{stg} | Storage Temperature | - 40 to 150 | °C | | T, | Junction Temperature | 0 to 150 | °C | #### THERMAL DATA | R _{th j-c} Thermal Resistance Junction-case | Max 3 | °C/W | Ì | |--|-------|------|---| |--|-------|------|---| ## **ELECTRICAL CHARACTERISTICS** $(V_7 = 2.2V, V_s = 48V, T_{amb} = 25$ °C, unless otherwise specified, refer to the test circuits) | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | |-------------------|--|---------------------------------------|------|-------|------|------| | Vs | Operating Supply Voltage
Range | | 10 | | 48 | V | | 12 | Pin 2 Quiescent Current | 1 ₃ = 0 ₅ = 0 | | 10 | 20 | mA | | 16 | Pin 6 Quiescent Current | 1 ₃ = 0 | | 20 | 40 | mA | | 11 | Amplifier bias Current | V ₁ = 1V | | - 0.2 | - 1 | μА | | V ₅ | Quiescent Output Voltage | $V_s = 48V$ $R_a = 3.9K\Omega$ | | 24.2 | | | | | | $V_s = 35V$ $R_a = 5.6K\Omega$ | | 17.5 | | ٧ | | V _{5L} | Output Saturation Voltage to GND | I ₅ = 1A | | 1.2 | 1.5 | ٧ | | V _{5H} | Output Saturation Voltage to Supply | - I ₅ = 1A | | 2.2 | 2.6 | V | | V _{D5-6} | Diode Forward Voltage
between Pin 5-6 | I _D = 1A | | 1.5 | | ٧ | | V _{D3-6} | Diode Forward Voltage
between Pin 3-6 | I ₃ = 1A | | 2 | | ٧ | | R ₁ | Input Resistance | | | 200 | | ΚΩ | | Tj | Junction Temperature for
Thermal Shutdown | | | 140 | | °C | Figure 1 : DC Test Circuits. Figure 1a: Measurement of I1; I2; I6. S₁: (a) I₂ and I₆; (b) I₁. Figure 1c : Measurement of V_{5L}. Figure 1b: Measurement of V_{5H}. Figure 1d: Measurement of V₅.