CMOS Single Chip 8-bit Microcontroller with Analog Interfaces # **Description** The TSC8051A2 is a stand alone, high performance CMOS microcontroller designed for use in automotive and industrial applications. The TSC8051A2 retains all features of the 80C51 with extended ROM capacity (16K bytes), 256 bytes of RAM, a 10–source 2–level interrupt, a full duplex serial port, an on–chip oscillator and clock and two 16 bits timers. In addition, the TSC8051A2 has an 8-bit 8-channel A/D converter, a serial peripheral interface compatible with SPI, a high security watchdog and an advanced 8 channel Capture and Compare timer Unit. The fully static design of the TSC8051A2 allows to reduce system power consumption by bringing the clock frequency down to any value, even DC, without loss of data The design is done with a specific care to reduce EMC emission and suceptibility. This circuit is manufactured using SCMOS process and is available in commercial, industrial, military and automotive ranges; it runs from 0 up to 20 MHz in the automotive temperature range -40° C to $+125^{\circ}$ C. # **Features** - 256 bytes of RAM - 16 K bytes of ROM or OTP - Four 8-bit I/O ports; each bit can be: - TTL I/O - Push–pull output - CMOS input trigger with or without pull-down - Two 16 bit timer/counter - A programmable window watch-dog with integrated low power RC oscillator; basic period 20 ms typical, maximum period 128 times 20 ms - A eight channels 16 bits Capture and Compare Unit with: - input capture - output compare and PWM - A 8-bit resolution analog to digital converter with eight multiplex inputs; conversion time 48 machine cycles. - One port with programmable interrupt for keyboard function - Several power reduction modes with enhanced wake up capabilities - Power fail detection, Power on reset bit - Full duplex UART compatible with standard 80C51 - A serial peripheral interface (SPI+MW) - PQFP, PLCC or SSOP 44 package; PQFP 64 for emulation # **Block Diagram** (1): Alternate function of Port 1 (2): Alternate function of Port 2 (3): Alternate function of Port 3 (0): Alternate function of Port 0 Figure 1. TSC8051A2 Block Diagram # **Pin Configuration** # **TSC8051A2** 4 | Pin
PQFP
44 | Pin
PLCC
44 | Name | Function | Pin
PQFP
44 | Pin
PLCC
44 | Name | Function | |-------------------|-------------------|----------------|---|-------------------|-------------------|-----------------------|--| | 39 | 1 | ANAVSS | VSS Analog | 17 | 23 | VCC | VCC | | 40 | 2 | P1.0 | | 18 | 24 | P2.0/A08/CCU0 | Address bus high order or CCU module 1 external I/O | | 41 | 3 | P1.1 | | 19 | 25 | P2.1/A09/CCU1 | Address bus high order or CCU module 1 external I/O | | 42 | 4 | P1.2 | | 20 | 26 | P2.2/A10/CCU2 | Address bus high order or CCU module 2 external I/O | | 43 | 5 | P1.3 | | 21 | 27 | P2.3/A11/CCU3 | Address bus high order or CCU module 3 external I/O | | 44 | 6 | P1.4/MISO | SPI master in ,slave out | 22 | 28 | P2.4/A12/CCU4 | Address bus high order or CCU module 4 external I/O | | 1 | 7 | P1.5/MOSI | SPI master out, slave in | 23 | 29 | P2.5/A13/CCU5 | Address bus high order or CCU module 5 external I/O | | 2 | 8 | P1.6/SCK | SPI serial clock I/O | 24 | 30 | P2.6/A14/CCU6 | Address bus high order or CCU module 6 external I/O | | 3 | 9 | P1.7/SS | SPI slave select | 25 | 31 | P2.7/A15/CCU7/
ECI | Address bus high order or CCU module 7 external I/O or CCU count input | | 4 | 10 | RST | Reset | 26 | 32 | PSEN | Program store enable | | 5 | 11 | P3.0/RXD/ANA0 | Serial receive port or
Keyboard | 27 | 33 | ALE/PROG | Address latch enable/Program pulse | | 6 | 12 | AVREF+ | Analog positive reference | 28 | 34 | VSS | | | 7 | 13 | P3.1/TXD/ANA1 | Serial transmit port or
Analog Input 1 | 29 | 35 | EA/VPP | External access enable/Programming supply voltage | | 8 | 14 | P3.2/INT0/ANA2 | External interrupt 0 or Analog Input 2 | 30 | 36 | P0.7/AD7/KB7 | Mux. low order address & data bus or Keyboard | | 9 | 15 | P3.3/INT1/ANA3 | External interrupt 1 or
Analog Input 3 | 31 | 37 | P0.6/AD6/KB6 | Mux. low order address & data bus or Keyboard | | 10 | 16 | P3.4/T0/ANA4 | Timer/counter 0 input or
Analog Input 4 | 32 | 38 | P0.5/AD5/KB5 | Mux. low order address & data bus or Keyboard | | 11 | 17 | P3.5/T1/ANA5 | Timer/counter 1 input or
Analog Input 5 | 33 | 39 | P0.4/AD4/KB4 | Mux. low order address & data bus or Keyboard | | 12 | 18 | P3.6/WR/ANA6 | External data memory write strobe or Analog Input 6 | 34 | 40 | P0.3/AD3/KB3 | Mux. low order address & data bus or Keyboard | | 13 | 19 | P3.7/RD/ANA7 | External data memory read strobe or Analog Input 7 | 35 | 41 | P0.2/AD2/KB2 | Mux. low order address & data bus or Keyboard | | 14 | 20 | XTAL2 | Crystal output | 36 | 42 | P0.1/AD1/KB1 | Mux. low order address & data bus or Keyboard | | 15 | 21 | XTAL1 | Crystal input | 37 | 43 | P0.0/AD0/KB0 | Mux. low order address & data bus or Keyboard | | 16 | 22 | VSS | VSS | 38 | 44 | ANAVCC | VCC Analog | # **Pin Functions** Figure 2. TSC8051A2 Pin Functions # **TSC8051A2** # **General Signal Description** # Vss Digital ground #### Vcc Digital supply voltage #### **ANAVss** Analog groundl # **ANAVcc** Analog supply voltage # EA / Vpp External Access enable must be strapped to Vss in order to enable any device plugged on port 0 / port 2 to fetch code from 0 up to 16K. EA must be strapped to Vcc for internal program execution. This pin also receives the 12V programming supply (Vpp input) to program the internal EPROM. # XTAL1 It is the input to the inverting oscillator amplifier and the input for external clock generator. #### XTAL2 It is the output from the inverting oscillator amplifier. # RESET The active level of the RESET pin is low. An active level on this pin, while the oscillator is running, resets the device. An internal resistor permits power-on reset only using an external capacitor. The reset pin is bidirectional; it acts as an output when a reset is issued by the watch–dog function. # ALE / PROG The Address Latch Enable output signal is used to latch the low order byte of the address during accesses to external memory. ALE can sink and source 8 LS TTL loads. If desired, ALE buffer can be disable. Then, ALE is pulled low. This pin is also used (program pulse input) to program the internal EPROM. # **PSEN** Program Store Enable is the read strobe to external program memory, else it remains high. PSEN can sink and source 8 LS TTL loads. # PORT 0 Port 0 can act the part of address/data bus or standard I/O port. Its dedicated alternate function are the inputs of the keyboard interrupt. In the default configuration, port 0 operates the same as it does in the 80C51, with open-drain outputs. # PORT 1 Port 1 can act the part of standard I/O port. This port dedicated alternate functions are P.1[4:7] for the synchronous serial link (SPI or mWIRE) interface. In the default configuration, port 1 operates the same as it does in the 80C51, with internal pullups. Port 1 type C51 is sometimes called "quasi-bidirectional" due to the internal pullups. # PORT 2 Port 2 can act the part of address bus or standard I/O port.Its dedicated alternate function is the CCU (Capture & Compare Unit) interface.In the default configuration, port 2 operates the same as it does in the 80C51, with internal pullups. #### PORT 3 Port 3 can act the part of standard I/O port. This port has two types of alternate functions: - The first ones are the same than in C51 (Rxd, TxD, ..., WR, RD), - The second type of alternate functions are 8 inputs for the 8-bit A/D converter. In the default configuration, port 3 operates the same as it does in the C51, with internal pullups. Port 3 type C51 is sometimes called "quasi-bidirectional" due to the internal pullups. #### AVREF+ Positive reference voltage for the ADC module. # **Electro-Magnetic Compatibility (EMC)** Primary attention is paid to the reduction of electro-magnetic emission of the TSC8051A2. The following features reduce the electro-magnetic emission and additionally improve the electro-magnetic susceptibility: - The TSC8051A2 provides one analog supply voltage pin and one analog ground pin. Placed on the middle of one side of the package, this pair (ANAVcc/ANAVss) has short bounding wires, thus reducing the generated noise. - In order to reduce the radiation loop area, the two pins are adjacent. - The TSC8051A2 provides one group of digital supply voltage and digital ground, in pairs of pins (Vss/Vcc). Placed on the middle of the sides of the package, this group have short bounding wires, thus reduces the generated noise. In order to reduce the radiation loop area, pins are adjacent inside group. - External capacitors should be connected across associated pins (ANAVcc/ANAVss or Vcc/Vss). Lead length should be as short as possible. Ceramic CMS capacitors are recommended, 10nF + 100nF. - Several internal decoupling capacitors improve the EMC radiation behaviour and the EMC immunity. - In order to reduce the spectrum of the TSC8051A2, many signals has been treated, principally the periodic signals. The current provided for external signals, the period of clocks and the raising/falling edges are the major points which has been nursed. - For application that never (or temporarily) requires external memory resources, the ALE buffer can be disable. - Once the oscillator is stable, the gain is reduce by 2 (6 dB). - Peripherals receiving XTAL clock have, each one, their own prescaler toproduce the operating clock they need. - The output buffers are especially designed to control rising and falling edges.