

SLUS870A - JANUARY 2009 - REVISED MARCH 2012

RAD-TOLERANT CLASS V, HIGH-SPEED PWM CONTROLLER

Check for Samples: UC1825-SP

FEATURES

- QML-V Qualified, SMD 5962-87681
- Rad-Tolerant: 30 kRad (Si) TID (1)
- **Compatible With Voltage- or Current-Mode** Topologies
- **Practical Operation Switching Frequencies to** 1 MHz
- 50-ns Propagation Delay-to-Output
- **High-Current Dual Totem Pole Outputs** (1.5 A Peak)
- Wide Bandwidth Error Amplifier
- Fully Latched Logic With Double-Pulse Suppression
- **Pulse-by-Pulse Current Limiting**
- Soft Start/Maximum Duty-Cycle Control
- **Undervoltage Lockout With Hysteresis**
- Low Start-Up Current (1.1 mA)
- Radiation tolerance is a typical value based upon initial device (1) qualification with dose rate = 10 mrad/sec. Radiation Lot Acceptance Testing is available - contact factory for details.

DESCRIPTION

The UC1825 PWM control device is optimized for high-frequency switched mode power supply applications. Particular care was given to minimizing propagation delays through the comparators and logic circuitry while maximizing bandwidth and slew rate of the error amplifier. This controller is designed for use in either current-mode or voltage mode systems with the capability for input voltage feedforward.

Protection circuitry includes a current limit comparator with a 1-V threshold, a TTL compatible shutdown port, and a soft start pin which will double as a maximum duty-cycle clamp. The logic is fully latched to provide jitter-free operation and prohibit multiple pulses at an output. An undervoltage lockout section with 800 mV of hysteresis assures low start up current. During undervoltage lockout, the outputs are high impedance.

This device features totem pole outputs designed to source and sink high peak currents from capacitive loads, such as the gate of a power MOSFET. The on state is designed as a high level.

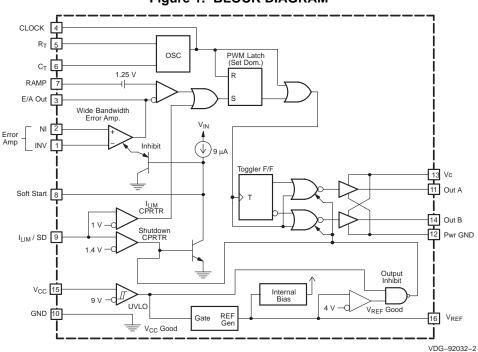


Figure 1. BLOCK DIAGRAM

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

A

UC1825-SP

SLUS870A – JANUARY 2009 – REVISED MARCH 2012

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

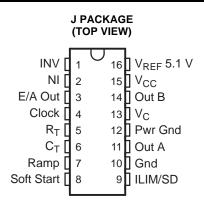
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Table 1. ORDERING INFORMATION ⁽¹)
---	---

T _A	PACKAGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	CDIP – J	5962-8768104VEA	UC1825J-SP
	LCCC – FK	5962-8768104V2A	UC1825FK-SP

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.


SLUS870A - JANUARY 2009 - REVISED MARCH 2012

TERMINAL FUNCTIONS

	NO.			DESCRIPTION		
NAME	J	FK	I/O	DESCRIPTION		
Clock	4	5	0	Output of the internal oscillator		
C _T	6	8	I	Timing capacitor connection pin for oscillator frequency programming. The timing capacitor should be connected to the device ground using minimal trace length.		
E/A Out	3	4	0	Output of the error amplifier for compensation		
Gnd	10	13	-	Analog ground return pin		
ILIM/SD	9	12	Ι	Input to the current limit comparator and the shutdown comparator		
INV	1	2	Ι	Inverting input to the error amplifier		
NC		1, 6, 11, 16	-	No connection		
NI	2	3	Ι	Non-inverting input to the error amplifier		
Out A	11	14	0	High-current totem pole output A of the on-chip drive stage		
Out B	14	18	0	High-current totem pole output B of the on-chip drive stage		
Pwr Gnd	12	15	-	Ground return pin for the output driver stage		
Ramp	7	9	I	Non-inverting input to the PWM comparator with 1.25-V internal input offset. In voltage mode operation this serves as the input voltage feed-forward function by using the CT ramp. In peak current mode operation, this serves as the slope compensation input.		
R _T	5	7	Ι	Timing resistor connection pin for oscillator frequency programming		
Soft Start	8	10	Ι	Soft-start input pin which also doubles as the maximum duty cycle clamp		
V _C	13	17	-	Power supply pin for the output stage. This pin should be bypassed with a 0.1-µF monolithic ceramic low ESL capacitor with minimal trace lengths.		
V _{CC}	15	19	-	Power supply pin for the device. This pin should be bypassed with a 0.1-µF monolithic ceramic low ESL capacitor with minimal trace lengths.		
V _{REF} 5.1 V	16	20	0	5.1-V reference. For stability, the reference should be bypassed with a 0.1- μ F monolithic ceramic low ESL capacitor and minimal trace length to the ground plane.		

FK PACKAGE (TOP VIEW) > 5.1 NI NC KEF (VCC CC 3 2 1 20 19 18 Out B E/A Out 1 4 Clock 5 NC 6 V_{C} 17 NC 16 R_{T} П 7 15 Pwr Gnd CT Out A 8 14 10 11 12 13 9 Soft Start NC NC Gnd

SLUS870A – JANUARY 2009 – REVISED MARCH 2012

www.ti.com

STRUMENTS

XAS

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

		UNIT	
V _C , V _{CC}	30	V	
DC	0.5	А	
Pulse (0.5 µs)	2.0	А	
INV, NI, Ramp	–0.3 to 7	V	
Soft Start, ILIM/SD	-0.3 to 6	v	
Clock	-5		
E/A Out	5		
Soft Start	20	mA	
R _T	-5		
	1	W	
	–65 to 150	ာ	
	300		
	DC Pulse (0.5 µs) INV, NI, Ramp Soft Start, ILIM/SD Clock E/A Out Soft Start	DC 0.5 Pulse (0.5 μs) 2.0 INV, NI, Ramp -0.3 to 7 Soft Start, ILIM/SD -0.3 to 6 Clock -5 E/A Out 5 Soft Start 20 R _T -5 1 -65 to 150	

(1) All voltages are with respect to GND; all currents are positive into, negative out of part; pin numbers refer to DIL-16 package.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range ($T_A = T_J = -55^{\circ}C$ to 125°C), unless otherwise noted.

		MIN	MAX	UNIT
V _{CC}	Supply voltage	10	30	V
	Sink/source output current (continuous or time average)	0	100	mA
	Reference load current	0	10	mA

THERMAL RATINGS TABLE

PACKAGE	θ _{JA} (°C/W)	θ _{JC} (°C/W)
DIL-16 (J)	80–120	28 ⁽¹⁾
LCC-20 (FK)	70–80	20 ⁽¹⁾

(1) θ_{JC} data values stated were derived from MIL-STD-1835B. MIL-STD-1835B states that the baseline values shown are worst case (mean + 2s) for a 60 × 60 mil microcircit device silicon die and applicable for devices with die sizes up to 14400 square mils. For device die sizes greater than 14400 square mils use the following values; dual-in-line, 11°C/W; flat pack 10°C/W; pin grid array, 10°C/W.

SLUS870A - JANUARY 2009 - REVISED MARCH 2012

www.ti.com

ELECTRICAL CHARACTERISTICS

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
REFERENCE					
Output voltage	$T_{\rm J} = 25^{\circ}$ C, $I_{\rm O} = 1$ mA	5.05	5.10	5.15	V
Line regulation	10 V < V _{CC} < 30 V		2	20	mV
Load regulation	1 mA < I _O < 10 mA		5	20	mV
Total output variation	Line, load, temperature	5.0		5.2	V
Output noise voltage	10 Hz < f < 10 kHz		50		μV
Short-circuit current	V _{REF} = 0 V	-15	-50	-100	mA
OSCILLATOR SECTION					
Initial accuracy	$T_{J} = 25^{\circ}C$	360	400	440	kHz
Voltage stability	10 V < V _{CC} < 30 V		0.2%	2%	
Temperature stability	$T_{MIN} < T_A < T_{MAX}$		5%	16%	
Total variation	Line, Temperature	340		460	kHz
Clock out high		3.9	4.5		V
Clock out low			2.3	2.9	V
Ramp peak ⁽¹⁾		2.6	2.8	3.0	V
Ramp valley ⁽¹⁾		0.7	1.0	1.25	V
Ramp valley to peak ⁽¹⁾		1.6	1.8	2.1	V
ERROR AMPLIFIER				1	
Input offset voltage				10	mV
Input bias current			0.6	3	μA
Input offset current			0.1	1	μA
Open-loop gain	1 V < V _O < 4 V	60	95		dB
CMRR	1.5 V < V _{CM} < 5.5 V	75	95		dB
PSRR	$10 \text{ V} < \text{V}_{CC} < 30 \text{ V}$	85	110		dB
Output sink current	V _{E/AOut} = 1 V	1	2.5		mA
Output source current	$V_{E/AOut} = 4 V$	-0.5	-1.3		mA
Output high voltage	$I_{E/AOut} = -0.5 \text{ mA}$	4.0	4.7	5.0	V
Output low voltage	I _{E/AOut} = 1 mA	0	0.5	1.0	V
Gain bandwidth product ⁽¹⁾	f = 200 kHz	5	10.5		MHz
Slew rate ⁽¹⁾		4	9		V/µs
PWM COMPARATOR				1	
Ramp bias current	V _{Ramp} = 0 V		-1	-5	μA
Duty cycle range	ivanp -	0%		80%	I.
E/A out zero dc threshold	V _{Ramp} = 0 V	1.1	1.25		V
Delay to output ⁽¹⁾	i vanp -		50	80	ns
SOFT-START					
Charge current	V _{Soft Start} = 0.5 V	3	9	20	μA
Discharge current	$V_{\text{Soft Start}} = 0.0 \text{ V}$ $V_{\text{Soft Start}} = 1 \text{ V}$	1		20	mA
CURRENT LIMIT/SHUTDOWN		•			
Current limit/shutdown bias current	$0 < V_{ILIM/SD} < 4 V$			15	μA
Current limit threshold		0.9	1.0	1.1	μ <u>γ</u> V
Shutdown threshold		1.25	1.40	1.55	V
Delay to output ⁽¹⁾		1.20	50	80	ns

(1) Parameters ensured by design and/or characterization, if not production tested.

SLUS870A – JANUARY 2009 – REVISED MARCH 2012

www.ti.com

ÈXAS NSTRUMENTS

ELECTRICAL CHARACTERISTICS (continued)

I Inlace otherwise stated thes	e enerifications apply for R_	$-3.65 \text{ kO} \text{ C}_{-} - 1 \text{ nE} \text{ V}_{-}$	15 V, –55°C < T _A < 125°C, T _A = T _J
	$rac{}{}$	$- 0.00 \text{ Ksz}, 0_{\text{T}} - 1 \text{ m}, v_{\text{CC}} -$	$15 v_{1} = 55 0 < 1_{A} < 125 0, 1_{A} = 1_{A}$

PARAMETERS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OUTPUT					
	I _{OUT} = 20 mA		0.25	0.40	V
Low-level output voltage	I _{OUT} = 200 mA		1.2	2.2	V
	$I_{OUT} = -20 \text{ mA}$	13.0	13.5		V
High-level output voltage	I _{OUT} = -200 mA	12.0	13.0		V
Collector leakage	$V_{\rm C} = 30 \ V$		10	500	μA
Rise/fall time (2)	$C_L = 1 \text{ nF}$		30	75	ns
UNDER-VOLTAGE LOCKOUT					
Start threshold		8.8	9.2	9.6	V
UVLO hysteresis		0.4	0.8	1.2	V
SUPPLY CURRENT SECTION					
Startup current	V _{CC} = 8 V		1.1	2.5	mA
I _{CC}	$V_{INV} = V_{Ramp} = V_{ILIM/SD} = 0 V, V_{NI} = 1 V$		22	33	mA

(2) Parameters ensured by design and/or characterization, if not production tested.

6 Submit Documentation Feedback

SLUS870A - JANUARY 2009 - REVISED MARCH 2012

PRINTED CIRCUIT BOARD LAYOUT CONSIDERATIONS

High speed circuits demand careful attention to layout and component placement. To ensure proper performance of the UC1825 follow these rules:

- 1. Use a ground plane.
- 2. Damp or clamp parasitic inductive kick energy from the gate of driven MOSFETs. Do not allow the output pins to ring below ground. A series gate resistor or a shunt 1-A Schottky diode at the output pin serves this purpose.
- 3. Bypass V_{CC} , V_C , and V_{REF} . Use 0.1- μ F monolithic ceramic capacitors with low equivalent series inductance. Allow less than 1-cm of total lead length for each capacitor between the bypassed pin and the ground plane.
- 4. Treat the timing capacitor, C_T, like a bypass capacitor.

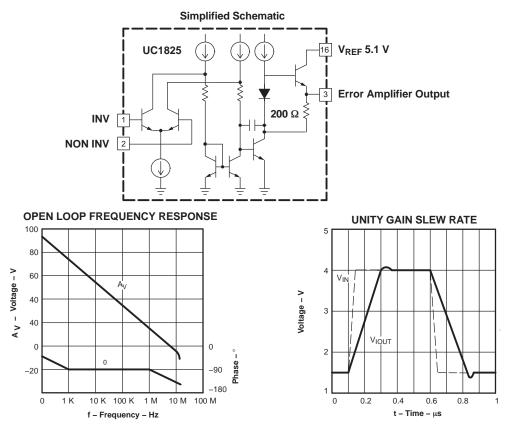
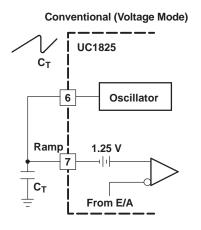
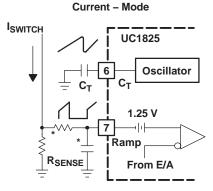
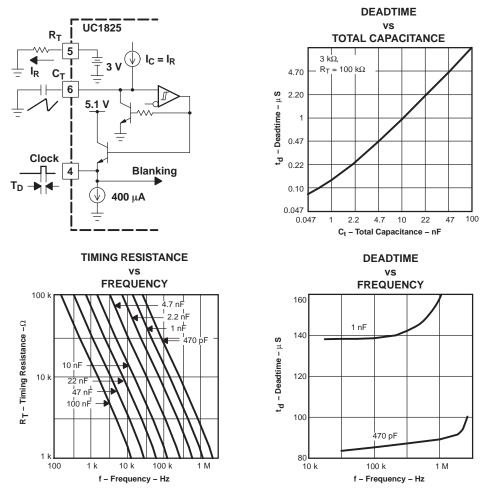




Figure 2. Error Amplifier


SLUS870A – JANUARY 2009 – REVISED MARCH 2012

* A small filter may be required to suppress switch noise.

8

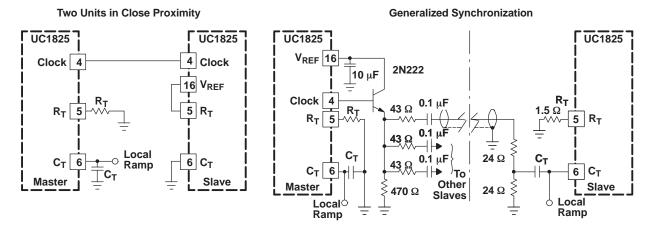


Figure 5. Synchronized Operation

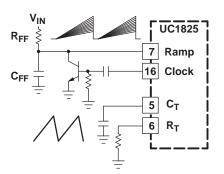


Figure 6. Forward Technique for Off-Line Voltage Mode Application

The circuit shown in Figure 6 will achieve a constant volt-second product clamp over varying input voltages. The ramp generator components, R_T and C_R are chosen so that the ramp at the ILIM/SD pin crosses the 1-V threshold at the same time the desired maximum volt-second product is reached. The delay through the functional nor block must be such that the ramp capacitor can be completely discharged during the minimum deadtime.

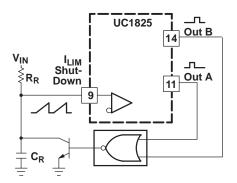


Figure 7. Constant Volt-Second Clamp Circuit

TEXAS INSTRUMENTS

www.ti.com

SLUS870A – JANUARY 2009 – REVISED MARCH 2012

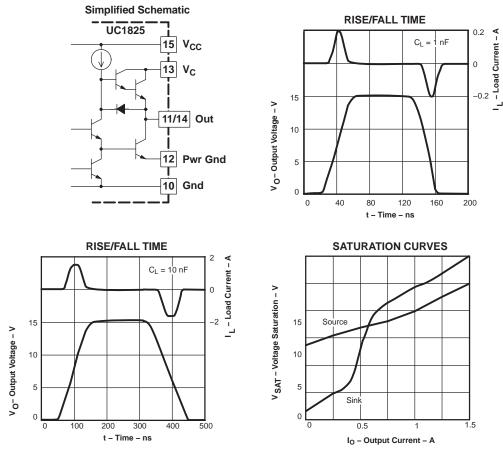


Figure 8. Output Section

The circuit in Figure 8 is useful for exercising many of the UC1825 functions and measuring their specifications.

As with any wideband circuit, careful grounding and bypass procedures should be followed. The use of a ground plane is highly recommended.

SLUS870A - JANUARY 2009 - REVISED MARCH 2012

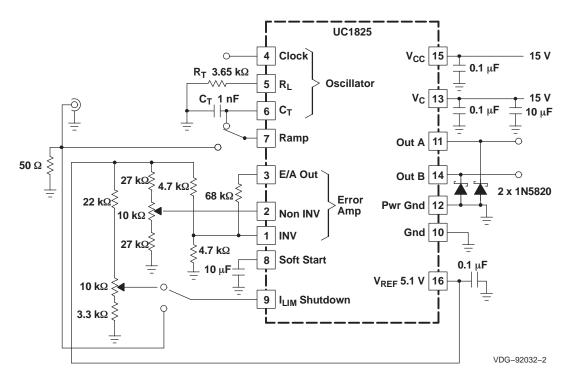
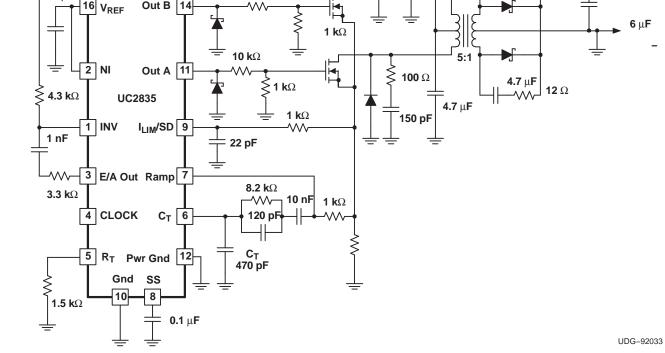



Figure 9. Open-Loop Laboratory Test Fixture

www.ti.com

V_{CC} V_{C} **0.1** μ**F** Out B 14 16

4.7 μF

≶

Figure 10. Design Example: 50 W, 48-V to 5-V DC-to-DC Converter – 1.5-MHz Clock Frequency

÷ ⁺ V_{IN} 42 V to 56 V

SLUS870A – JANUARY 2009–REVISED MARCH 2012

≶ **390** Ω

15

13

🛣 15 V

1N 5820

۱ΛΛ

www.ti.com

V_{OUT} 5 V

1 A to 10 A

0.8 μΗ

Page

www.ti.com

SLUS870A – JANUARY 2009 – REVISED MARCH 2012

•	Added MAX spec of 16% to temperature stability parameter	5
-	Added MAX spec of 10% to temperature stability parameter	0

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
5962-8768101V2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
5962-8768101VEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	
5962-8768104V2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
5962-8768104VEA	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF UC1825-SP :

Catalog: UC1825

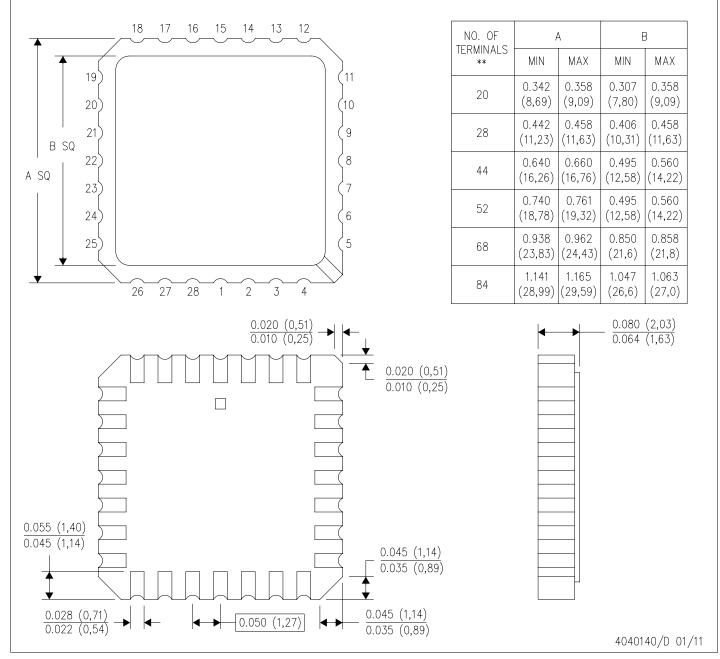
28-Aug-2012

NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

LEADLESS CERAMIC CHIP CARRIER

FK (S-CQCC-N**) 28 TERMINAL SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. This package can be hermetically sealed with a metal lid.

D. Falls within JEDEC MS-004

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ctivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated