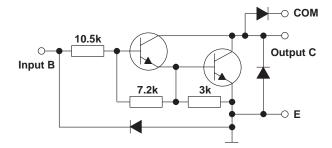

HIGH-VOLTAGE, HIGH-CURRENT DARLINGTON TRANSISTOR ARRAY

- 500-mA-Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay Driver Applications
- Compatible With ULN2800A-Series

N DUAL-IN-LINE PACKAGE (TOP VIEW)

description


The ULN2804A is a monolithic high-voltage, high-current Darlington transistor array, comprising eight npn Darlington pairs. All units feature high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of each Darlington pair is 500 mA. Outputs and inputs can each be paralleled for higher current capability.

Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers.

The ULN2804A has an approximate 10.5-k Ω series input resistor to allow its operation directly from CMOS or PMOS, utilizing supply voltages of 6 to 15 volts.

The ULN2804A is characterized for operation from -20°C to 85°C.

schematic (each Darlington pair)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLLS311 - JUNE 1998

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Collector-emitter voltage	50 V
Input voltage (see Note 1)	30 V
Continuous collector current	500 mA
Output clamp diode current	500 mA
Total substrate-terminal current	–2.5 A
Continuous dissipation (total package) at (or below) 25°C free air temperature (see Note 2)	1150 mW
Operating free-air temperature range	. -20°C to 85°C
Storage temperature range	-65°C to 150°C
Lead temperature 1/16 inch from case for 10 seconds	260°C

NOTES: 1. All voltages values, unless otherwise noted, are with respect to the emitter/substrate terminal E.

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

PARAMETER		TEST TEST CONDITIONS		ULN2804A			LINUT		
		FIGURE	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
ICEX	Collector cutoff current	1	V _{CE} = 50 V,	I _I = 0			50		
		2	T _A = 70°C, V _I = 1 V, V _{CE} = 50 V				500	μΑ	
I _{I(off)}	Off-state input current	3	$V_{CE} = 50 \text{ V, I}_{C} = 500 \mu\text{A,}$ $T_{A} = 70^{\circ}\text{C}$		50	65		μА	
I _{I(ON)}	Input current	4	V _I = 3.85 V					mA	
			V _I = 5 V			0.35	0.5		
			V _I = 12 V			1.0	1.45		
	On-state input voltage		V _{CE} = 2 V,	$I_C = 125 \text{ mA}$			5	v	
			V _{CE} = 2 V,	$I_C = 200 \text{ mA}$			6		
		6	V _{CE} = 2 V,	$I_C = 250 \text{ mA}$					
V _{I(on)}			V _{CE} = 2 V,	$I_C = 275 \text{ mA}$			7		
			V _{CE} = 2 V,	$I_C = 300 \text{ mA}$					
					V _{CE} = 2 V,	$I_C = 350 \text{ mA}$			8
	Collector-emitter saturation voltage			Ι _Ι = 250 μΑ,	$I_C = 100 \text{ mA}$		0.9	1.1	
VCE(sat)		5	Ι _Ι = 350 μΑ,	$I_C = 200 \text{ mA}$		1.0	1.3	V	
			Ιι = 500 μΑ,	$I_C = 350 \text{ mA}$		1.3	1.6		
I _R	Clamp-diode reverse current	7	V _R = 50 V				50	μΑ	
VF	Clamp-diode forward voltage	8	I _F = 350 mA			1.7	2	V	
C _i	Input capacitance		V ₁ = 0 V,	f = 1 MHz		15	25	pF	

switching characteristics at 25°C free-air temperature

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	See Figure 9		0.25	1	μs
tPHL	Propagation delay time, high- to low-level output	See Figure 9		0.25	1	μs
Vон	High-level output voltage after switching	$V_S = 50 \text{ V}$, $I_O = 300 \text{ mA}$, See Figure 10	V _S - 20			mV

^{2.} For operation above 25°C free-air temperature, refer to the Dissipation Derating Curves in the Thermal Information section.

PARAMETER MEASUREMENT INFORMATION

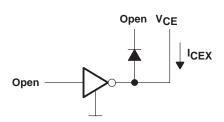


Figure 1. I_{CEX}

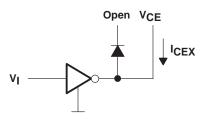


Figure 2. I_{CEX}

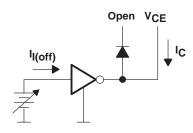


Figure 3. I_{I(off)}

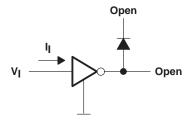


Figure 4. I_{I(on)}

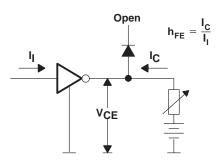


Figure 5. h_{FE}, V_{CE(sat)}



Figure 6. V_{I(on)}

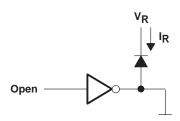


Figure 7. I_R

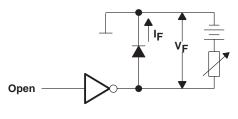
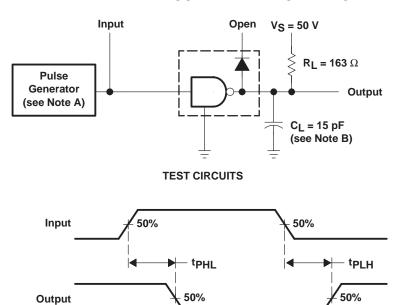
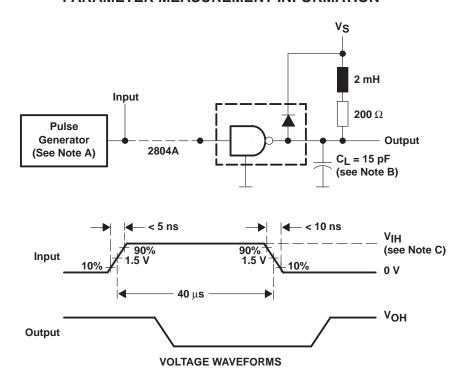



Figure 8. V_F

PARAMETER MEASUREMENT INFORMATION


NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 KHz, Z_O = 50 Ω .

B. C_L includes probe and jig capacitance.

Figure 9. Propagation Delay Times

VOLTAGE WAVEFORMS

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_{out} = 50 Ω .

- B. C_L includes probe and jig capacitance.
- C. $V_{IH} = 8 V$

Figure 10. Latch-Up Test

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated