UNICORN MICROELECTRÓNICS

9278788 0001288 8 🔳

24E D

10 Memory Tone/Pulse Dialer

• Low memory retention current ($\leq 0.1 \ \mu A$ at V_{DD} =

Key-in tone output for valid keypad entry recognition

IMC

T-75-07-07

UM91260/61

Features

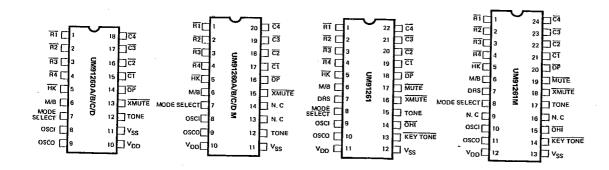
- 32-digit redial memory (31 digits in tone mode)
- Ten indirect memories, 16 digits in pulse mode, 15 digits in tone mode
- Tone/Pulse mode switching via slide switch (4.1 second pause inserted automatically)
- Wide operating voltage: 1.8V ~ 5.5V
- Uses 480 KHz ceramic resonator

(UM91261 only)

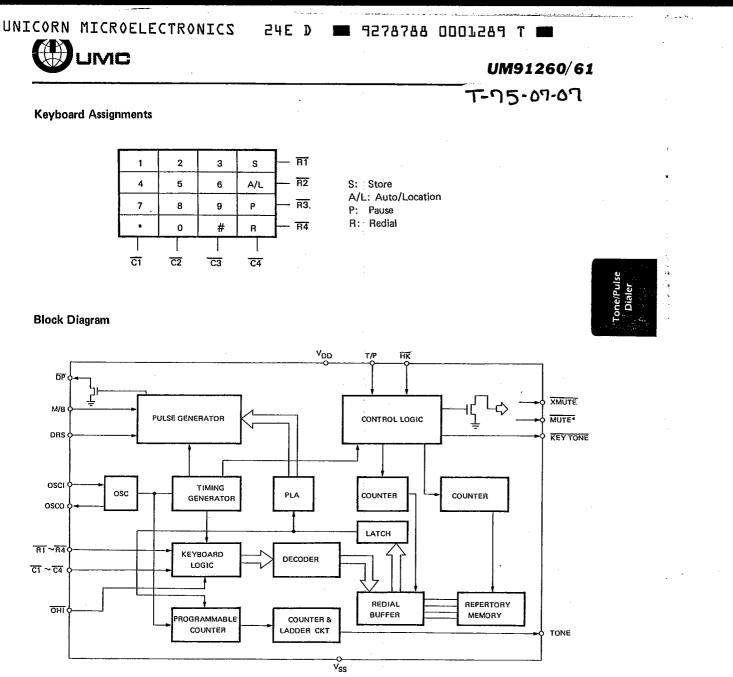
Selectable Make/Break ratio

Selectable dialing rate (UM91261 only)

10V, HK = 1


General Description

The products in the UM91260/61 series are tone/pulse switchable dialers with ten 16-digit number memories and 32-digit redial memory. Pulse to tone mode switching is performed via a slide switch. The dialing rate and storage mode for each version of the UM91260 is . shown at right. The UM91261 is a 22-pin version of the 91260 with key-in tone output and selectable dialing rate and storage mode.


Ordering Information

Part No.	Dialing rate	Storage mode	Package
UM91260A/60AM	10 pps	Off-hook only	P-DIP 18L/ SO 20L
UM91260B/60BM	20 pps	On/Off-hook	P-DIP 18L/ SO 20L
UM91260C/60CM	10 pps	On/Off-hook	P-DIP 18L/ SO 20L
UM91260D/60DM	20 pps	Off-hook only	P-DIP 18L/ SO 20L
UM91261/61M	Pin Selectable	Pin Selectable	P-DIP 22L/ SO 24L

Pin Configurations

2-30

UNICORN MICROELECTRONICS 24E D

Absolute Maximum Ratings*

H 9278788 0001290 6 H

*Comments

T-75-07-07

UM91260/61

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC Characteristics $(V_{DD} = 3.5V, V_{SS} = 0V, F_{OSC} = 480 \text{ KHz}, T_{OP} = 25^{\circ}\text{C}$, unless otherwise specified}

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions	Test Ckt.	
Operating Voltage	V _{DD}	1.8		5,5	v	Pulse mode		
	•DD	1,8		5.5] `	DTMF Mode	A	
Memory Retention Voltage	V _{MR}	1			v		 	
Memory Retention Current	I _{MR}		0.05	0.4	μA	$V_{DD} = 1.0V$ All outputs unloaded $\overline{HK} = V_{DD}$	-	
Supply Operating	DDP		0.25	0.5		Oscillator running; all outputs		
Current	¹ оот		0.46	1.0	mA	unloaded	A	
Standby Current	I _{SD}		1.0	5,0	μA	$\overline{HK} = V_{SS}$ $V_{DD} = 2.5V$ All outputs unloaded	A	
Output Sink Current	IOL1	1.0	2		mA	V _{OL} = 0.4V		
DP, MUTE, XMUTE	IOL2	[.] 0.4	1		mA	$V_{OL} = 0.4V V_{DD} = 2.0V$	В	
Input Voltage Range	V _{IH}	0.8		1	v			
	VIL	0		0.2	V _{DD}		—	
Row Input Current	I _R	5	10	20	μA	V _{IN} = 0V All outputs unloaded	С	
Column Input Current	lc	0.6	1.4	2.0	mA	V _{IN} = 3.5V All outputs unloaded	С	
Single Column Tone	V _{oc}	540	590	640		R _{LOAD} = 10 KΩ V _{DD} = 2,5V	D	
Output Amplitude	+OÇ	100	1200	1300	mV _{P-P}	R _{LOAD} = 10 KΩ V _{DD} = 5.5V	D	
Single Row Tone	V _{OR}	410	450	490		R _{LOAD} = 10 KΩ V _{DD} = 2.5V	D	
Output Amplitude	*OR	850	920	990	m∨ _{P-P}	R _{LOAD} = 10 KΩ V _{DD} = 5,5V	D.	
Preemphasis	Twist	1	2	3	dB		D	
Valley of Single Tone	Vv	0.40	0,46	0.52	V _{DD}		D	
Distortion	DIS%		1	5	%	*Note 1	D	

Note 1: DIS(%) =
$$\frac{100 \cdot (V_1^2 + V_2^2 + \dots + V_n^2)^{\frac{1}{2}}}{(V_{|L}^2 + V_{|H}^2)^{\frac{1}{2}}}$$

a. $V_1 \dots V_n$ are the intermodulation or the harmonic frequencies in the 500 Hz to 3400 Hz band.

b. V_{IL} , V_{IH} are the individual frequency components of the DTMF signal.

2–32

UNICORN MICROELECTRONICS 24E D 9278788 0001291 8

UM91260/61

AC Characteristics

T-75-07-07

Parameter	Symbol		Conditions	Min.	Тур.	Max.	Unit
PULSE			· · · · · · · · · · · · · · · · · · ·				
	14/5	M/B Termi	inal = V _{DD}		1/2		
Make/Break Ratio	M/B	M/B Termi	inal = V _{SS}	1	2/3		
		DRS = V _D	D (20 pps Selection)		20	-11	
Dial Pulse Rate	DR	DRS = V _{SS} (10 pps Selection)			10		PPS
			MB = 1/2	-	33,3		
Males These		10 pps	MB = 2/3		40.0		ms
Make Time	Тм	20 000	M/B = 1/2 ⁱ		16.7		ms
		20 pps	M/B = 2/3		20,0		
		10	M/B = 1/2		66.6		
0. I.T.		10 pps	M/B = 2/3		60		mat
Break Time	Т _В		M/B = 1/2		33.3		ms
		20 pps	M/B = 2/3		30		
, · · · · · · · · · · · · · · · · ·	-	10 pps	M/B = 1/2		806		
	T _{IDP}		M/B = 2/3		800		
Inter-Digit Pause Time		20 pps	M/B = 1/2		523		ms
			M/B = 2/3		520		
······································			M/B = 1/2	1	840		
		10 pps	M/B = 2/3		840		
Pre-Digit Pause	T _{PDP}	20 pps	M/B = 1/2		540		ms
			M/B = 2/3		540		1
<u></u>			M/B = 1/2		0		
		10 pps	M/B = 2/3		0		ms
XMUTE MUTE DELAY Time	T _{MDP}		M/B = 1/2		0		
		20 pps	M/B = 2/3		0		ms
TONE		<u>.</u>			ł	•	
Minimum Tone Duration	T _{MFD}				110		ms
Min. Tone Inter-Digit T _{TIDP}				110		ms	
Tone Output Pre-Digit Pause	Т _{трор}				130		ms
XMUTE Delay Time	Тмот				110	· ·	ms
Auto Pause Time	T _{AP}		· · · · · · · · · · · · · · · · · · ·		4.1		S
Oscillator Start-up Time	TSTART				8	i	ms

÷ 2–33

,

AC Characteristics (Continued)

UM91260/61

T-75-07-07

Parameter	' Symbol	Conditions				
X MUTE, MUTE Start-up Time	T _{MS}	Conditions	Min.	Typ.	Max.	Unit
KEY-IN	'MS			30		ms
Keypad Debounce Time	T _{KD}					
Key Scan Frequency	F _{KS}	71. 77		22		ms
KEY-IN TONE	KS	CT~C4, RT~R4		377		Hz
KT. Duration Time	T _{KTD}				L	
KT Frequency	F _{KT}			42		ms
KT Start-up Time	TKTSTART	·		1.2		KHz
				30		ms

24E D

Conditions	697	Actual 695.65	Error (%)	Unit
	697	695.65	21101 (76)	í Unit
			<u> </u>	
	770		0.19	HZ
	and the second second second second	769.23	-0.1	HZ
Food = 480 KH-		851.06	-0.11	HZ
	941	941.18	+0.02	+
	1209	1212.12		HZ
Γ	1336			HZ
F	1477		0.2	HZ
		1481.48	+0.3	HZ
	^F osc ⁼ 480 KHz	1209	Fosc = 480 KHz 852 851.06 941 941.18 1209 1212.12 1336 1333.33	$F_{OSC} = 480 \text{ KHz}$ $\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Pin Description

Pin No.							
91260	91261	Designation	Description				
1	1 1						
2	2		Key inputs.				
3	3	R1~R4	When a row and a column are				
4	4	• •	When a row and a column are connected, a key operation is activated If the On-Hook Store pin is inhibited at				
15	19						
16	20						
17	21	$\overline{C1} \sim \overline{C4}$					
18	22						
			a valid key-in condition. The key-in debounce time is typically 22 ms.				
5	5	HK	Hook switch input.				
			When $HK = V$ as $O_{H} U_{H}$				
			When $HK = V_{DD}$, an On-Hook state exists.				
6			When $\overline{HK} = V_{SS}$, an Off-Hook state exists.				
·	6	M/B	Dial pulse Make/Break ratio select input.				
			If $M/B = V_{DD}$, the Make/Break ratio is 1/2.				
			If $M/B = V$ at a basis of the state of the				
			If $M/B = V_{SS}$, the Make/Break ratio is 2/3.				

24E D

,

UM91260/61

Т-75-07-07

Pin Description (Continued)

Pin No.			1				
91260	91261	Designation	Description				
	7	DRS	Dialing rate select input. If $DRS = V_{DD}$, the dialing rate is 20 pps. If $DRS = V_{SS}$, the dialing rate is 10 pps.				
7	8	MODE SELECT	Pulse/DTMF mode select input. If MODE SELECT = V _{DD} , Pulse mode is in effect. If MODE SELECT = V _{SS} , DTMF mode is in effect.				
8 9	9 10	OSCI OSCO	Oscillator I/O. A 480 KHz ceramic resonator and two 100 pF serial loading capacitors form a complete oscillator circuit. The circuit is activated when HK is low. Oscillator start-up time is typically 10 ms. C = 100 pF $C = 100 pF$ $C = 100 pF$ $C = 100 pF$				
10 11	11 12	V _{DD} V _{SS}	Positive power supply. Negative power supply. Operating voltage range: Pulse mode = 1.8V to 5.5V DTMF mode = 1.8V to 5.5V				
	13	KEY-TONE	Key-in tone output. This output is valid for both Pulse and Tone modes. Output frequency is 1.5 KHz and has a duration of 42.6 ms after a valid key-in is detected. This function is only available on the UM91261.				
	14	ОНІ	On-Hook store. On-hook store function is available when this input is high, inhibited when this input is low.				
12	15	TONE	DTMF signal output. Pull-down load resistance is 10,000 Ω . The minimum tone and IDP durations are built-in for both normal dialing and redialing.				
13	16	X MUTE	Transmit mute output. This is an N-channel open drain output. The output transistor is switched on while a sequence of digits is being dialed (for both Pulse and Tone modes). Otherwise, it is switched off.				
	17	MUTE	Mute output. This is an N-channel open drain output. The output transistor is switched on while a sequence of pulse digits is being dialed. Otherwise, it is switched off.				
14	18	DP	Dial pulse output. This pin is an N-channel open drain output. When DP output is low (switched on), it serves as a break signal in Pulse dialing. For other opera- tions, DP output is normally high impedance (switched off).				

UNICORN MICROELECTRONICS

24E D 🖬 9278788 0001294 3 🛤

Operational Procedures

- 9-1 Symbol definitions
 - a. D_P: Pulse digit, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
 - b. D_t: tone digit, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, *, #
 - c. LOCi: i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
 - d. ZiZiZi: Conversation mode
 - e. 0--0∳ :OFF-HOOK
 - f. 0−0↓ : ON-HOOK
 - g _____ : Input Level from Low to high
 - h. ____ : Input Level from High to Low,
- 9-2 Recommended dialing, redialing, mixed dialing and storing operations
- 1. Normal dialing in pulse mode

0-0 🕴 , Dp . . . Dp , ZiZiZi 0-0 🛊

- Normal dialing in tone mode
 0-0 ↓ , D_t . . . D_t, ZiZiZi 0-0↓
- Mixed dialing in pulse-to-tone mode
 0−0 ↓ , D_P ... D_P MODE SELECT.

_____ D_t...D_t, ZiZiZi 0−0 ↓

4. Redialing

UM91260/61

- T-75-07-07

- 5. Storing Numbers to Repertory Memory
 (i) Off-hook Store 0-0⁴, S, D_P... D_P or D_t... D_t
 - $\begin{array}{l} \hline A/L \\ \hline , \ LOCi, 0-0 \\ \hline \end{array}$

A/L, LOCI,

 Dialing from Repertory Memory 0--0 ↓ , ATL, LOCi, ZiZiZi 0-0 ↓

Functional Description

1. N-Channel Open Drain Output - DP, XMUTE, MUTE,

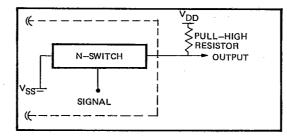


Figure. 1

2. DTMF Generator

The digitally synthesized sinewave of the UM91260 series is well designed, with a 6 level, 12 segment, 1/2 V_{DD} reference voltage (see Fig. 2). The THD (Total Harmonic Distortion) of the DTMF output is typically 1%, when V_{DD} = 2.5V to 5.5V and frequency is in the 500 HZ to 3400 HZ band.

DTMF Signal THD vs. operating voltage and DTMF output amplitude vs. operating voltage is shown in figures 3 and 4.

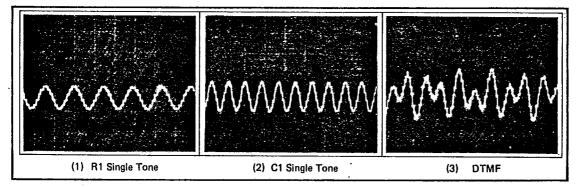


Figure 2 Waveforms

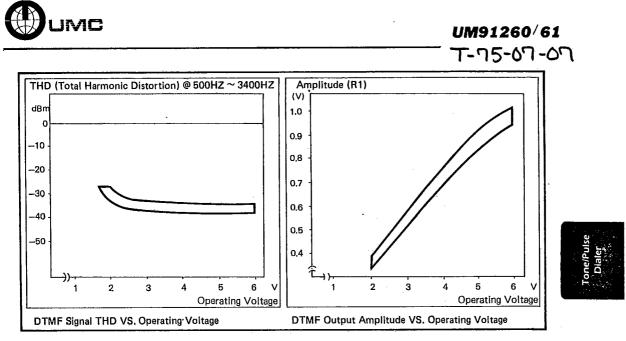
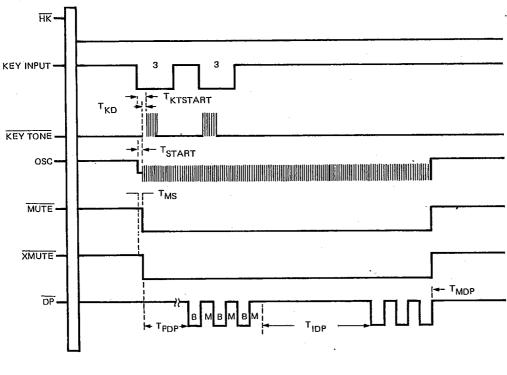
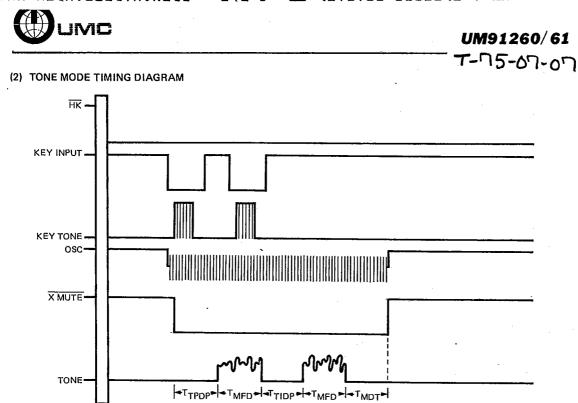
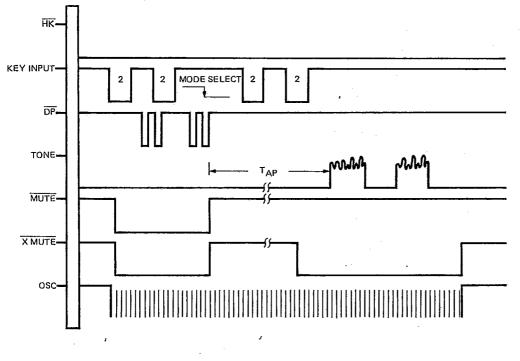



Figure 4

Timing Diagrams

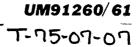

(1) PULSE MODE TIMING DIAGRAM

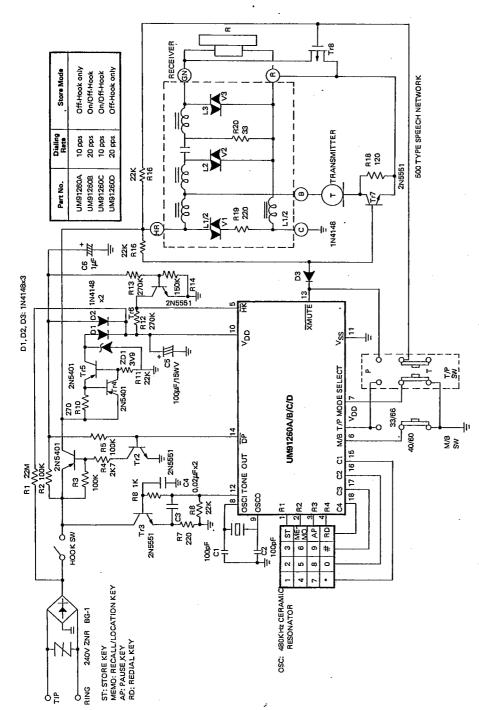
2—37


UNICORN MICROELECTRONICS 24E D 🖬 9278788 DOD1296

,

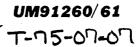
7


(3) NORMAL PULSE TO TONE MIXED DIALING VIA SLIDE SWITCH



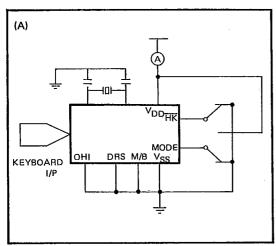
,

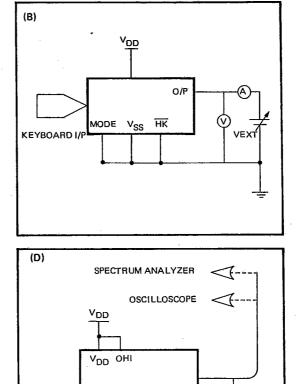
Typical Application Circuit



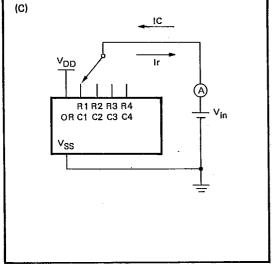
Tone/Pulse Dialer

UNICORN MICROELECTRONICS 24E D 🖬 9278788 0001298 0 🖬


ميدوها وهمت ورماد فرمت المار دارد



The State State of the State of


Test Circuits

VSS HK M/BDRS MODE

OSCILLOSCOPE: TEKTRONIX 468 SPECTRUM ANALYZER: HP 3585A 10KΩѮ

