DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu \mathrm{PC} 2781 \mathrm{GR}$

DESCRIPTION

The $\mu \mathrm{PC} 2781 \mathrm{GR}$ is Silicon monolithic IC designed for use as IQ demodulator in digital communication systems. This IC consists of AGC amplifier, dual balanced mixers (DBM), oscillator, quadrature phase shifter and I \& Q output buffer amplifiers.

The package is 20-pin SSOP (shrink small outline package) suitable for high-density surface mount.

FEATURES

- On chip quadrature $\left(90^{\circ}\right)$ phase shifter
- IQ phase and amplitude balance Amplitude Balance $\pm 0.5 \mathrm{~dB}$
- Low distortion $\mathrm{IM}_{3} 40 \mathrm{dBc}$
- Supply Voltage 5 V
- Packaged in 20-pin SSOP suitable for high-density surface mount

ORDERING INFORMATION

PART NUMBER	PACKAGE	PACKAGE STYLE
μ PC2781GR-E1	20-pin plastic SSOP $(225$ mil)	Embossed tape 12 mm wide. $2.5 \mathrm{k} /$ REEL Pin 1 indicates pull-out direction of tape

For evaluation sample order, please contact your local NEC office. (Part number for sample order: μ PC2781GR)

INTERNAL BLOCK DIAGRAM AND PIN CONFIGURATION (Top View)

PIN FUNCTIONS

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
PIN \\
No.
\end{tabular} \& PIN NAME \& \begin{tabular}{l}
PIN \\
VOLTAGE \\
TYP. (V)
\end{tabular} \& FUNCTION AND EXPLANATION \& EQUIVALENT CIRCUIT \\
\hline 1 \& GND (IQ) \& 0.0 \& Ground pin of IQ outputs block. \& \\
\hline 2 \& Vcc (I) \& 5.0 \& Power supply pin of I-output. \& \\
\hline 3 \& Vagc \& 0 to 4 \& \begin{tabular}{l}
Gain control pin. \\
- @ measurement circuit 1 \\
\(\mathrm{V}_{\mathrm{AGC}}=0 \mathrm{~V}\) : Full gain \\
\(V_{\mathrm{AGC}}=4 \mathrm{~V}\) : Full reduction \\
- @ measurement circuit 2 \\
\(\mathrm{V}_{\mathrm{AGC}}=0 \mathrm{~V}\) : Full gain \\
\(V_{A G C}=5 \mathrm{~V}\) : Full reduction
\end{tabular} \& \\
\hline 4 \& GND (IF) \& 0.0 \& Ground pin of IF, MIX, REG block. \& \\
\hline 5 \& IFin

IFin \& 2.2 \& IF input pins. In case of single input, 5 pin or 6 pin should be grounded through capacitor. \&

\hline 7 \& GND (IQ) \& 0.0 \& Ground pin of IQ outputs block. \&

\hline 8 \& Vcc (IF) \& 5.0 \& Power supply pin of IF, MIX, REG block. \&

\hline 9 \& Vcc (Q) \& 5.0 \& Power supply pin of Q-output. \&

\hline 10 \& Vcc (PS) \& 5.0 \& Power supply pin of Phase Shifter block. \&

\hline 11 \& Qout

$\overline{\text { Qout }}$ \& $$
2.7
$$

$$
2.7
$$ \& Q-signal output pin. 11 pin and 12 pin are balance outputs. \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { PIN } \\
\& \text { No. }
\end{aligned}
\] \& PIN NAME \& \begin{tabular}{l}
PIN \\
VOLTAGE \\
TYP. (V)
\end{tabular} \& \multicolumn{2}{|l|}{FUNCTION AND EXPLANATION} \& \multicolumn{2}{|r|}{EQUIVALENT CIRCUIT} \\
\hline 13 \& GND (PS) \& 0.0 \& \multicolumn{2}{|l|}{Ground pin of Phase Shifter block.} \& \& \\
\hline \& \& \& External local \& \multicolumn{2}{|r|}{SAW (single)} \& SAW (balance) \\
\hline 14 \& OSC-B1 \& 3.1 \& Oscillator signal input pin. In case of single input, 14 pin or 17 pin should be grounded through capacitor. \& \multicolumn{2}{|r|}{Grounded through 1000 pF capacitor.} \& Connected to SAW resonator through capacitor. \\
\hline 15 \& OSC-C2 \& 3.7 \& OPEN \& \multicolumn{2}{|r|}{Connected to SAW resonator through capacitor.} \& Connected capacitor between 14 pin and 15 pin to oscillate with active feedback loop. \\
\hline 16 \& OSC-C1 \& 3.7 \& OPEN \& \multicolumn{2}{|l|}{OPEN} \& Connected capacitor between 16 pin and 17 pin to oscillate with active feedback loop. \\
\hline 17 \& OSC-B2 \& 3.1 \& Oscillator signal input pin. In case of single input, 14 pin or 17 pin should be grounded through capacitor. \& \multicolumn{2}{|r|}{Connected to SAW resonator through capacitor.} \& Connected to SAW resonator through capacitor. \\
\hline \& \multicolumn{4}{|l|}{\begin{tabular}{l}
<External Local> \\
<SAW resonator (balance)> \\
R: Resistor to adjust oscillator power.
\end{tabular}} \& \multicolumn{2}{|l|}{} \\
\hline 18 \& \[
\begin{aligned}
\& \text { OSC } \\
\& \text { OUT }
\end{aligned}
\] \& 3.7 \& \multicolumn{2}{|l|}{Oscillator signal output pin.} \& \& \\
\hline 19 \& lout

lout \& | 2.7 |
| :--- |
| 2.7 | \& \multicolumn{2}{|l|}{I-signal output pin. 19 pin and 20 pin are balance outputs.} \& \multicolumn{2}{|l|}{}

\hline
\end{tabular}

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	RATING	UNIT
Supply Voltage	V_{Cc}		6.0	V
Power Dissipation 1	PD 1	$\mathrm{~T}_{\mathrm{A}}=75^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=5.25 \mathrm{~V}^{\circ}{ }^{\circ}$	500	mW
Operating Ambient Temperature 1	$\mathrm{~T}_{\mathrm{A} 1}$		-40 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$		-55 to +150	${ }^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	TEST CONDITION	RATING	UNIT
Supply Voltage	Vcc		6.0	V
Power Dissipation 2	Pd2	$\mathrm{T}_{\mathrm{A}}=80^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.15 \mathrm{~V}^{*}$	467	mW
Operating Ambient Temperature 2	TA2		-40 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$

*1 Mounted on $50 \times 50 \times 1.6 \mathrm{~mm}$ double epoxy glass board.
RECOMMENDED OPERATING RANGE

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage 1	Vcc1		4.75	5.0	5.25	V
Operating Ambient Temperature 1	TA1		-40	+25	+75	${ }^{\circ} \mathrm{C}$
IF Input Level Range	PIF	Vout $=1 \mathrm{VP-P}$	-45	-	-25	dBm
Gain Control Voltage Range 1	Vagc1	*1	0.0	-	4.0	V
Gain Control Voltage Range 2	VAGc2	*2	0.0	-	5.0	V

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Voltage 2	Vcc2		4.75	5.0	5.15	V
Operating Ambient Temperature 2	TA2		-40	+25	+80	${ }^{\circ} \mathrm{C}$
IF Input Level Range	PIF	Vout $=1 \mathrm{~V}$ p-p	-45	-	-25	dBm
Gain Control Voltage Range 1	Vagc1	*1	0.0	-	4.0	V
Gain Control Voltage Range 2	VAGC2	*2	0.0	-	5.0	V

*1 By measurement circuit 1 External Resistance: 100Ω
*2 By measurement circuit 2 External Resistance: $4.7 \mathrm{k} \Omega+22 \mathrm{k} \Omega$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}\right.$, Zin =50 Ω, Zout $=1 \mathrm{k} \Omega$)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Circuit Current	Icc	No input signal	52.0	70.0	88.0	mA
IF Input Frequency	$\mathrm{fiF}^{\text {F }}$	$\mathrm{fiQ}=10 \mathrm{MHz}, \mathrm{fiF}>$ fosc $\quad * \mathbf{1 , 2}$	440	480	520	MHz
IQ Output Frequency	fio	$\begin{aligned} & \text { fif }>\text { fosc, Vout }=1 \text { Vp-p, Posc }=-8 \\ & \mathrm{dBm}, \mathrm{CG}(@ f \mathrm{IQ}=10 \mathrm{MHz}) \pm 1 \mathrm{~dB} * 1,2 \end{aligned}$	0.3	-	20	MHz
AGC Gain Control Range 1	GCR1	$\begin{aligned} & \mathrm{fiF}=480 \mathrm{MHz}, \mathrm{PIF}=-40 \mathrm{dBm}, \\ & \mathrm{fosc}=470 \mathrm{MHz}, \text { Posc }=-8 \mathrm{dBm}, \\ & \mathrm{fiQ}_{\mathrm{I}}=10 \mathrm{MHz}, \text { VAGC }=0 \text { to } 4 \mathrm{~V} \end{aligned}$	15	20	-	dB
AGC Gain Control Range 2	GCR2	$\begin{aligned} & \mathrm{fiF}_{\mathrm{I}}=480 \mathrm{MHz}, \text { PIF }=-40 \mathrm{dBm}, \\ & \mathrm{fosc}=470 \mathrm{MHz}, \text { Posc }=-8 \mathrm{dBm}, \\ & \mathrm{fiQ}_{\mathrm{IQ}}=10 \mathrm{MHz}, \mathrm{~V}_{\text {AGC }}=0 \text { to } 5 \mathrm{~V} \end{aligned}$	15	20	-	dB
IQ Phase Balance	$\Delta \Phi$	$\begin{aligned} & \text { fif }=480 \mathrm{MHz}, \text { fosc }=470 \mathrm{MHz}, \\ & \text { Posc }=-8 \mathrm{dBm}, \mathrm{fiQ}=10 \mathrm{MHz}, \\ & \text { Vout }=1 \mathrm{VP} \cdot \mathrm{P} \end{aligned}$	-2	0	+2	deg
IQ Amplitude Balance	$\Delta \mathrm{G}$	$\begin{aligned} & \mathrm{fIF}=480 \mathrm{MHz}, \mathrm{fosc}=470 \mathrm{MHz}, \\ & \text { Posc }=-8 \mathrm{dBm}, \mathrm{fiQ}=10 \mathrm{MHz}, \\ & \text { Vout }=1 \mathrm{VP-P} \end{aligned}$ ${ }^{*} 1,2$	-0.5	0	+0.5	dB
Output Voltage	Vout	$\mathrm{fiQ}=10 \mathrm{MHz}$	-	1.0	-	Vp.P

*1 By measurement circuit 1 External Resistance: 100Ω
*2 By measurement circuit 2 External Resistance: $4.7 \mathrm{k} \Omega+22 \mathrm{k} \Omega$

STANDARD CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}, \mathrm{Zin}=50 \Omega\right.$, Zout $=1 \mathrm{k} \Omega$)

PARAMETER	SYMBOL	TEST CONDITIONS	REFERENCE VALUE	UNIT
Conversion Gain	Gcv	$\begin{align*} & \mathrm{fiF}_{\mathrm{IF}}=480 \mathrm{MHz}, \mathrm{fosc}=470 \mathrm{MHz}, \\ & \text { Posc }=-8 \mathrm{dBm}, \mathrm{fiQ}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{AGC}}=0 \mathrm{~V} \end{align*}$	50	dB
Noise Figure (DSB)	NF	$\begin{aligned} & \mathrm{fiF}=480 \mathrm{MHz}, \text { fosc }=470 \mathrm{MHz}, \\ & \mathrm{Posc}=-8 \mathrm{dBm}, \mathrm{fiQ}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{AGC}}=0 \mathrm{~V} \end{aligned}$	13	dB
Third Intermodulation Distortion	$1 \mathrm{M}_{3}$	$\begin{aligned} & \text { fif } 1=480 \mathrm{MHz}, \text { fiF2 }=481 \mathrm{MHz}, \\ & \text { fosc }=470 \mathrm{MHz} \text {, Posc }=-8 \mathrm{dBm}, \\ & 0.708 \mathrm{~V} \text { P-P/tone } \end{aligned}$	40	dBc
LO to IF Isolation	Iso (LO-IF)	$\begin{aligned} & \text { fosc }=440 \text { to } 520 \mathrm{MHz}, \\ & \text { Posc }=-8 \mathrm{dBm} \end{aligned} \quad \text { *1, 2 }$	50	dB
LO to IQ Isolation	Iso (LO-IQ)	$\begin{aligned} & \text { fosc }=440 \text { to } 520 \mathrm{MHz}, \\ & \text { Posc }=-8 \mathrm{dBm} \end{aligned} \quad \text { *1, 2 }$	20	dB
Maximum Output Power	Po (sat)	Posc $=-8 \mathrm{dBm}, \mathrm{fiQ}=10 \mathrm{MHz} \quad * 1,2$	0	dBm
IQ Output Impedance	Zo (IQ)	$\mathrm{fio}=300 \mathrm{kHz}$ to 20 MHz	30	Ω
IF Input Impedance	Zin (IF)	$\mathrm{fiF}^{\prime}=480 \mathrm{MHz}$, no tuning	160-j30	Ω
IF Input Return Loss	RL (IF)	$\mathrm{fiF}=480 \mathrm{MHz}$, no tuning	5	dB

*1 By measurement circuit 1 External Resistance: 100Ω
*2 By measurement circuit 2 External Resistance: $4.7 \mathrm{k} \Omega+22 \mathrm{k} \Omega$
*3 By measurement circuit 3

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Amplitude Balance

Amplitude Balance vs. fıQ

Phase Balance

Phase Balance vs. fio

STANDARD CHARACTERISTICS

Pout Vs. Pin

IM_{3}

IM_{3}

Pout vs. Pin

IM_{3}

IF INPUT IMPEDANCE

IQ OUTPUT IMPEDANCE (Vcc = 5 V)

MEASUREMENT CIRCUIT 1

*1 In the case of measurement of IM3.
*2 • Vector Signal Analyzer or Vector Voltage Meter @ measurement of IQ phase balance and IQ amplitude balance.

- Spectrum Analyzer @ measurement of bandwidth and IM3.

MEASUREMENT CIRCUIT 2

*1 In the case of measurement of IM3.
*2 • Vector Signal Analyzer or Vector Voltage Meter @ measurement of IQ phase balance and IQ amplitude balance.

- Spectrum Analyzer @ measurement of bandwidth and IM3.

MEASUREMENT CIRCUIT 3

APPLICATION CIRCUIT EXAMPLE

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

ILLUSTRATION OF THE APPLICATION CIRCUIT ASSEMBLED ON EVALUATION BOARD

$\begin{aligned} & \text { NOTES } \text { - } \\ & \square \text { shows short circuited strip for ground } \\ & \text { - } \\ & \text { Pattern should be removed on this application } \\ & \text { shows through holes }\end{aligned}$

PACKAGE DIMENSIONS

20 PIN PLASTIC SSOP (225 mil)
 (UNIT: mm)

note

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	7.00 MAX.	0.276 MAX.
B	0.575 MAX.	0.023 MAX.
C	$0.65(\mathrm{T.P})$	0.026 (T.P)
D	$0.22_{-0.05}^{+0.10}$	$0.009_{-0.004}^{+0.002}$
E	0.1 ± 0.1	0.004 ± 0.004
F	1.8 MAX.	0.071 MAX.
G	1.5 ± 0.1	0.058 ± 0.004
H	6.4 ± 0.2	0.253 ± 0.008
I	4.4 ± 0.1	0.174 ± 0.004
J	1.0	0.040
K	$0.15_{-0.05}^{+0.10}$	$0.060_{-0.002}^{+0.004}$
L	0.5 ± 0.2	$0.020_{-0.004}^{+0.008}$
M	0.10	0.004
N	0.15	0.006
P	$3^{\circ}{ }_{-3^{\circ}}$	$3^{\circ}{ }_{-3^{\circ}}$

RECOMMENDED SOLDERING CONDITIONS

The following conditions (see table below) must be met when soldering this product.
Please consult with our sales officers in case other soldering process is used or in case soldering is done under different conditions.

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

μ PC2781GR

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $235^{\circ} \mathrm{C}$ or below, Reflow time: 30 seconds or below ($210^{\circ} \mathrm{C}$ or higher), Number of reflow process: 3, Exposure limit ${ }^{\text {Note }}$: None	IR35-00-3
VPS	Peak package's surface temperature: $215^{\circ} \mathrm{C}$ or below, Reflow time: 40 seconds or below ($200^{\circ} \mathrm{C}$ or higher), Number of reflow process: 3, Exposure limit ${ }^{\text {Note }}$: None	VP15-00-3
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Reflow time: 10 seconds or below, Number of reflow process: 1, Exposure limit ${ }^{\text {Note }}$: None	WS60-00-1
Partial heating method	Terminal temperature: $300^{\circ} \mathrm{C}$ or below, Flow time: 3 seconds or below, Exposure limit ${ }^{\text {Note }}$: None	

Note Exposure limit before soldering after dry-pack package is opened.
Storage conditions: $25^{\circ} \mathrm{C}$ and relative humidity at 65% or less.

Caution Do not apply more than single process at once, except for "Partial heating method".

[MEMO]

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

