BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC3219GV$

GENERAL PURPOSE 5 V AGC AMPLIFIER

DESCRIPTION

NEL

The μ PC3219GV is a silicon monolithic IC designed for use as AGC amplifier for digital CATV, cable modem systems. This IC consists of gain control amplifier and video amplifier.

The package is 8-pin SSOP suitable for surface mount.

This IC is manufactured using NEC's 10 GHz f⊤ NESAT[™]II AL silicon bipolar process. This process uses silicon nitride passivation film. This material can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

- Low distortion
- Wide AGC dynamic rangeOn-chip video amplifier

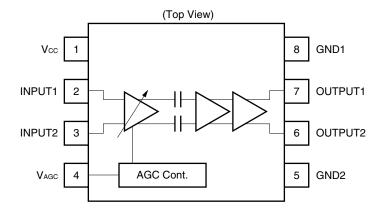
- $IM_3 = 58 \text{ dBc TYP}$. @single-ended output, $V_{out} = 0.7 V_{P-P}/tone$ GCR = 42.5 dB TYP.
- Vout = 1.0 VP-P TYP. @single-ended output

- Supply voltage: 5 V
- Packaged in 8-pin SSOP suitable for surface mounting

APPLICATIONS

Digital CATV/Cable modem receivers

ORDERING INFORMATION


Part Number	Package	Supplying Form
μΡC3219GV-E1	8-pin plastic SSOP (4.45 mm (175))	 Embossed tape 8 mm wide Pin 1 indicates pull-out direction of tape Qty 1 kpcs/reel

Remark To order evaluation samples, please contact your local NEC sales office. Part number for sample order: μ PC3219GV

Caution electro-static sensitive devices

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

INTERNAL BLOCK DIAGRAM AND PIN CONFIGURATION

PRODUCT LINE-UP OF 5V AGC AMPLIFIER

Part Number	lcc (mA)	Gмах (dB)	Gмin (dB)	GCR (dB)	NF (dB)	IM₃ (dBc) ^{№te}	Package
μPC3217GV	23	53	0	53	6.5	50	8-pin SSOP
μPC3218GV	23	63	10	53	3.5	50	(4.45mm(175))
μPC3219GV	36.5	42.5	0	42.5	9.0	58	

Note $f_1 = 44$ MHz, $f_2 = 45$ MHz, $V_{out} = 0.7$ VP-P/tone, single-ended output

PIN EXPLANATIONS

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V) ^{Note}	Function and Applications	Internal Equivalent Circuit
1	Vcc	4.5 to 5.5	_	Power supply pin. This pin should be externally equipped with bypass capacitor to minimize ground impedance.	
2	INPUT1	_	1.45	Signal input pins to AGC amplifier.	AGC AGC Control
3	INPUT2	_	1.45		
4	Vage	0 to Vcc	_	Gain control pin. This pin's bias govern the AGC output level. Minimum gain at $V_{AGC} < 0.5 \text{ V}$ Maximum gain at $V_{AGC} > 4.5 \text{ V}$ Recommended to use by dividing AGC voltage with externally resister (example: 100 k Ω).	AGC AMP.
5	GND2	0	_	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible.	
6	OUTPUT2	-	2.2	Signal output pins of video amplifier.	
7	OUTPUT1	-	2.2		
8	GND1	0	_	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All ground pins must be connected together with wide ground pattern to decrease impedance difference.	

Note Pin voltage is measured at Vcc = 5 V.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	Vcc	$T_A = +25^{\circ}C$	6.0	V
Power Dissipation	PD	T _A = +85°C Note	250	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C

Note Mounted on $50 \times 50 \times 1.6$ mm epoxy glass PWB, with copper patterning on both sides.

RECOMMENDED OPERATING RANGE

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc		4.5	5.0	5.5	V
Operating Ambient Temperature	TA	Vcc = 4.5 to 5.5 V	-40	+25	+85	°C
Gain Control Voltage Range	VAGC		0	-	Vcc	V
Operating Frequency Range	fвw		10	45	100	MHz

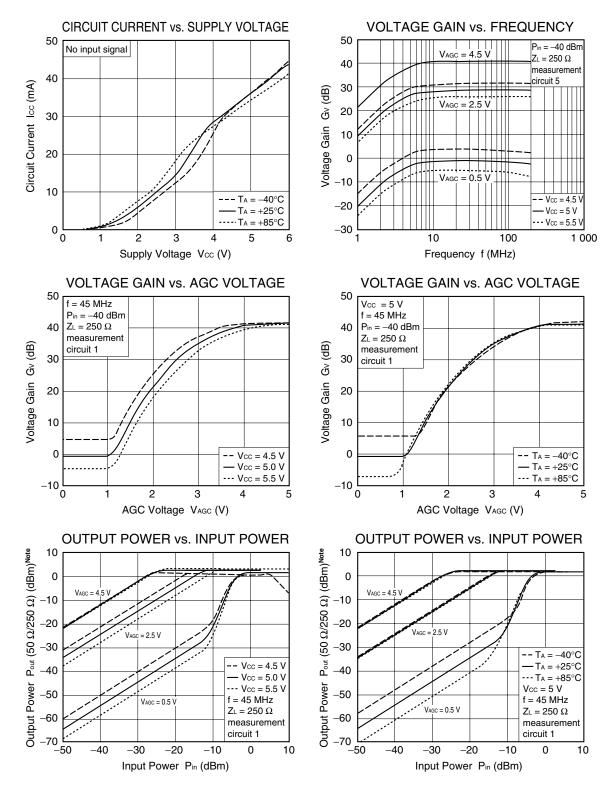
ELECTRICAL CHARACTERISTICS (TA = +25°C, Vcc = 5 V, f = 45 MHz, Zs = 50 Ω , ZL = 250 Ω , single-ended output)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
DC Characteristics							
Circuit Current	lcc	No input signal	Note 1	27.5	36.5	43.5	mA
AGC Voltage High Level	VAGC(H)	@Maximum gain	Note 1	4.5	-	Vcc	V
AGC Voltage Low Level	VAGC(L)	@Minimum gain	Note 1	0	-	0.5	V
RF Characteristics					•		
Maximum Voltage Gain	Gmax	$V_{AGC} = 4.5 V$, $P_{in} = -40 dBm$	Note 1	39	42.5	45	dB
Minimum Voltage Gain	Gмin	$V_{AGC} = 0.5 V$, $P_{in} = -20 dBm$	Note 1	-4	0	4	dB
Gain Control Range	GCR	V _{AGC} = 0.5 to 4.5 V	Note 1	35	42.5	-	dB
Output Voltage	Vout	P _{in} = -38 to -13 dBm	Note 1	_	1.0	-	V _{P-P}
Maximum Output Voltage	Voclip	V _{AGC} = 4.5 V @Maximum gain	Note 1	2.5	3.4	_	V _{P-P}
Noise Figure	NF	V _{AGC} = 4.5 V @Maximum gain	Note 2	-	9.0	10.5	dB

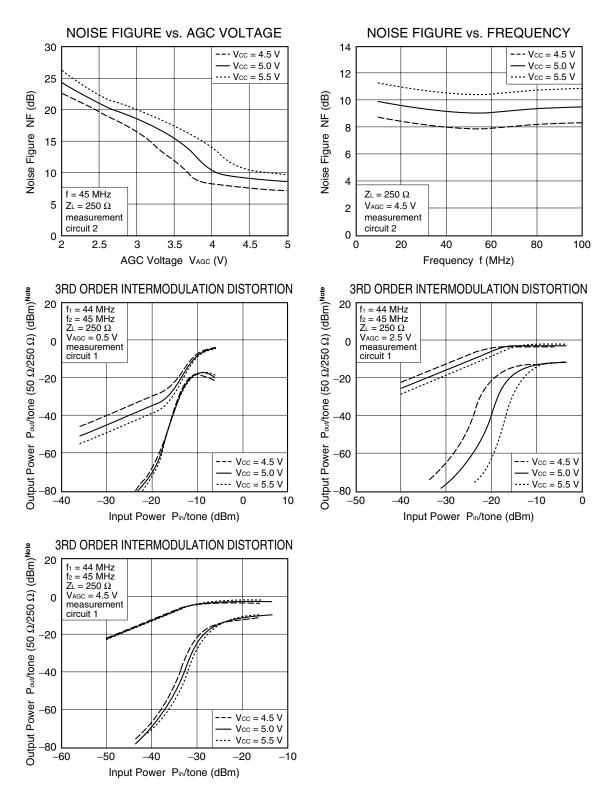
Notes 1. By measurement circuit 1

2. By measurement circuit 2

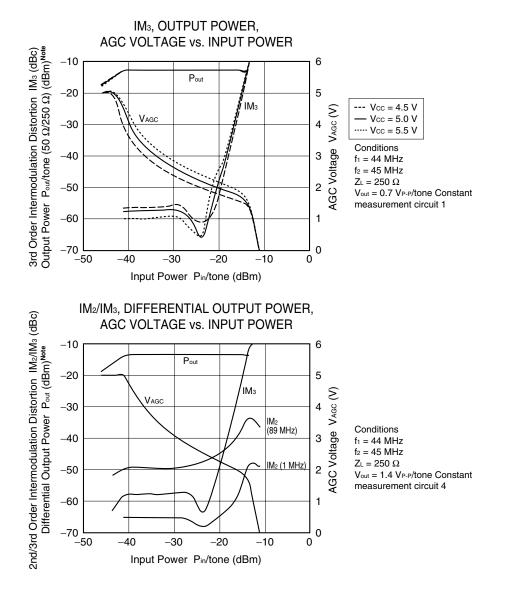
STANDARD CHARACTERISTICS (TA = +25°C, Vcc = 5 V, Zs = 50 Ω)

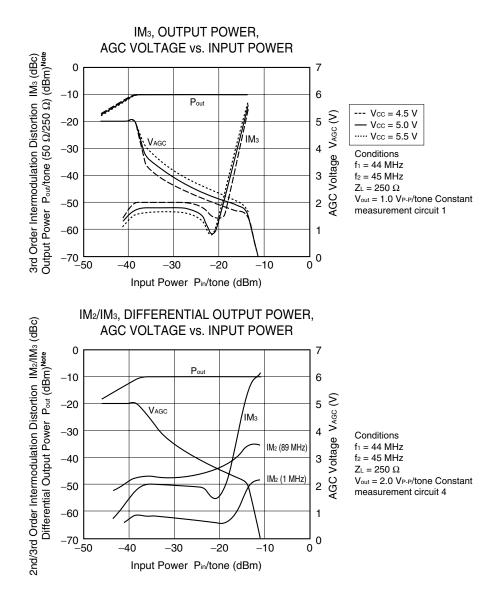

Parameter	Symbol	Test Conditions	Reference Value	Unit
Input Impedance	Zin	V _{AGC} = 0.5 V, f = 45 MHz Note 1	1.2k – j1.5k	Ω
Output Impedance	Zout	V _{AGC} = 0.5 V, f = 45 MHz Note 1	6.0 + j3.2	Ω
3rd Order Input Intercept Point	IIP₃	$\label{eq:VAGC} \begin{array}{l} V_{AGC} = 0.5 \ V \ @ \ Minimum \ gain, \\ f_1 = 44 \ MHz, \ f_2 = 45 \ MHz, \\ Z_L = 250 \ \Omega \ @ \ single-ended \ output \ \ \textit{Note 2} \end{array}$	-1	dBm
3rd Order Intermodulation Distortion 1	IM₃1		52	dBc
3rd Order Intermodulation Distortion 2	IM32		58	dBc
3rd Order Intermodulation Distortion 3	IM₃3	$ f_1 = 44 \text{ MHz}, f_2 = 45 \text{ MHz}, \\ P_{in} = -37 \text{ to } -20 \text{ dBm/tone}, Z_L = 500 \Omega, \\ V_{out} = 2.0 \text{ V}_{P\text{-}P}/\text{tone } @ \text{ differential output} \\ $	52	dBc
3rd Order Intermodulation Distortion 4	IM34	$ f_1 = 44 \text{ MHz}, \ f_2 = 45 \text{ MHz}, \\ P_{\text{in}} = -40 \text{ to } -23 \text{ dBm/tone}, \ Z_L = 500 \ \Omega, \\ V_{\text{out}} = 1.4 \text{ V}_{\text{P-P}} \text{/tone} @ \text{ differential output} \\ $	58	dBc
2nd Order Intermodulation Distortion 1	IM21		45	dBc
2nd Order Intermodulation Distortion 2	IM22	$ f_1 = 44 \text{ MHz}, f_2 = 45 \text{ MHz}, \\ P_{\text{in}} = -40 \text{ to } -23 \text{ dBm/tone}, Z_{\text{L}} = 500 \Omega, \\ V_{\text{out}} = 1.4 \text{ V}_{\text{P-P}/\text{tone}} @ \text{ differential output} \\ $	47	dBc

Notes 1. By measurement circuit 3

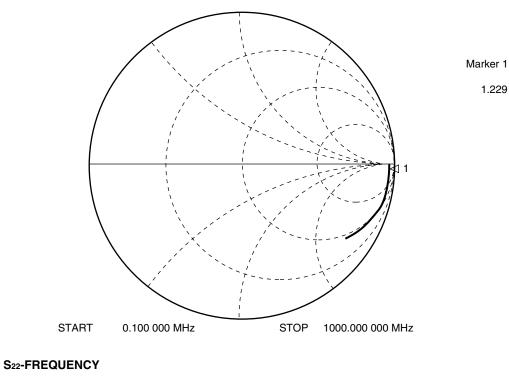

2. By measurement circuit 1

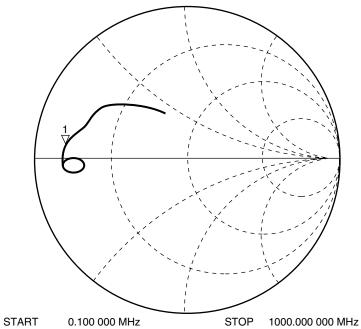
3. By measurement circuit 4


TYPICAL CHARACTERISTICS (Unless otherwise specified, $T_A = +25^{\circ}C$)


Note Measurement value with spectrum analyzer.

Note Measurement value with spectrum analyzer.

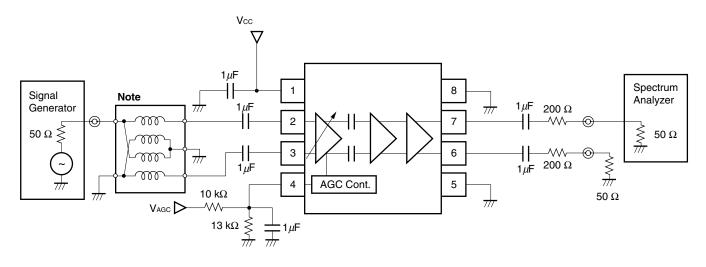

Note Measurement value with spectrum analyzer.



Note Measurement value with spectrum analyzer. **Remark** The graphs indicate nominal characteristics.

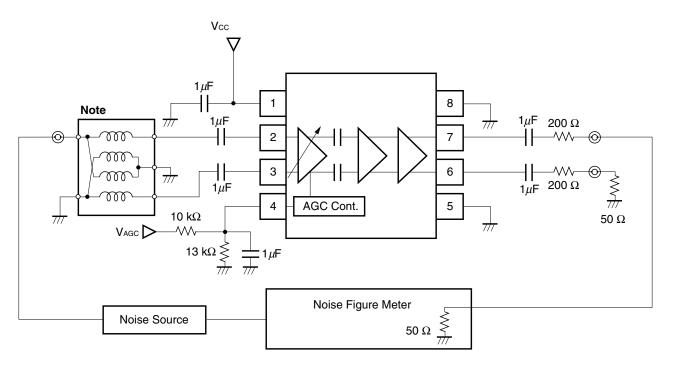
S-PARAMETERS

S11-FREQUENCY

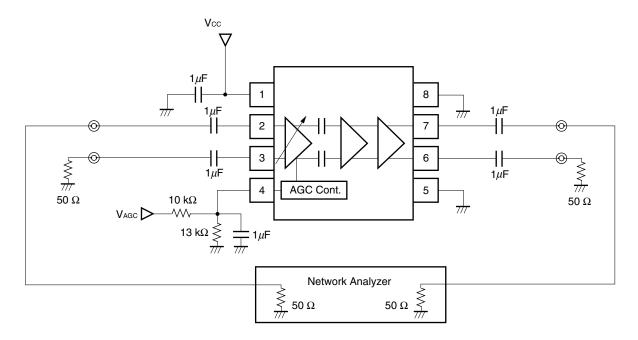


Marker 1

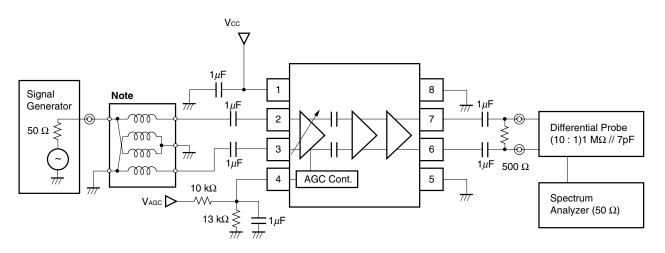
 $6.035 + j 3.157 \Omega$


1.229 k – j 1.522 kΩ

MEASUREMENT CIRCUIT 1

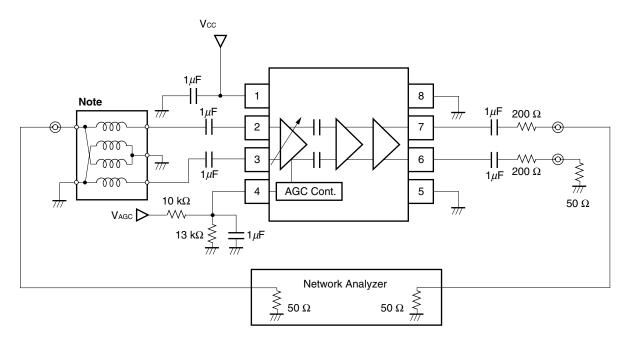

Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

MEASUREMENT CIRCUIT 2

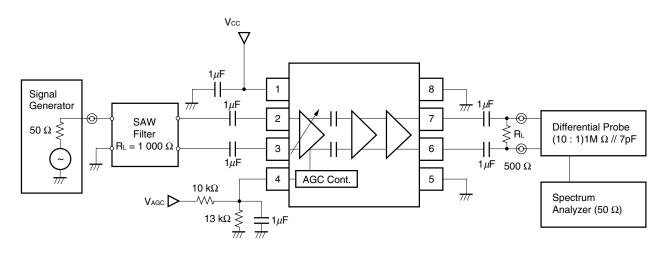


Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

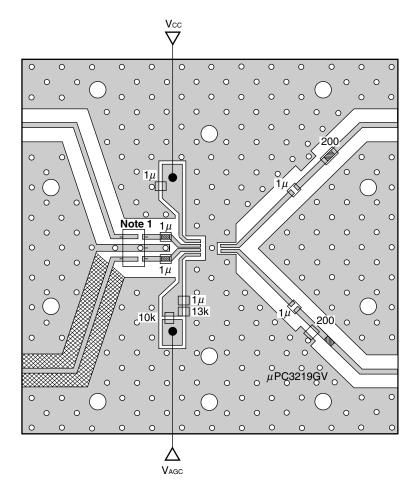
MEASUREMENT CIRCUIT 3



MEASUREMENT CIRCUIT 4

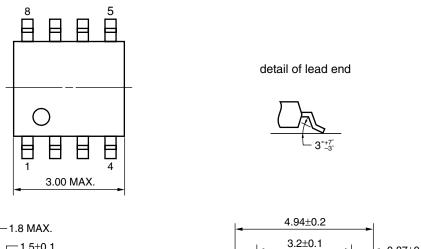

Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

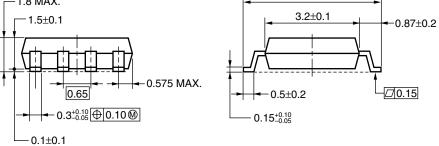
MEASUREMENT CIRCUIT 5



Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

APPLICATION CIRCUIT EXAMPLE


ILLUSTRATION OF THE EVALUATION BOARD FOR MEASUREMENT CIRCUIT 1



- Notes 1. Balun Transformer
 - 2. Back side: GND pattern
 - 3. Solder plated on pattern
 - 4. O: Through holes
 - 5. **[**///] represents cutout
 - 6. Construction of the second second

PACKAGE DIMENSIONS

8-PIN PLASTIC SSOP (4.45 mm (175)) (UNIT: mm)

NOTE ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesires oscillation).
- (3) Keep the track length of the ground pins as short as possible.
- (4) Bypass capacitance must be attached to Vcc line.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Conditions Symbol
Infrared Reflow	Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Count: 3, Exposure limit: None ^{Note}	IR35-00-3
VPS	Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Count: 3, Exposure limit: None ^{Note}	VP15-00-3
Partial Heating	Pin temperature: 300°C or below Time: 3 seconds or less (per side of device) Exposure limit: None ^{Note}	_

Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document **SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E)**.

[MEMO]

[MEMO]

NESAT (NEC Silicon Advanced Technology) is a trademark of NEC Corporation.

- The information in this document is current as of May, 2001. The information is subject to change
 without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data
 books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products
 and/or types are available in every country. Please check with an NEC sales representative for
 availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).