DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC659A$

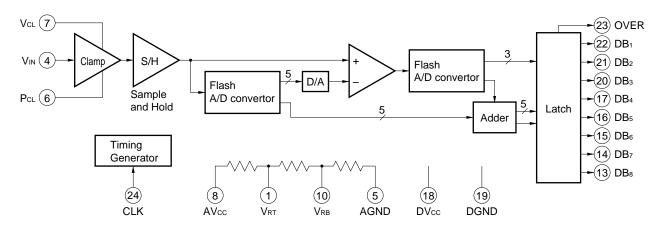
8-BIT A/D CONVERTER FOR VIDEO PROCESSING WITH REFERENCE GENERATOR AND CLAMP CIRCUIT

The μ PC659A is a 8-bit A/D converter for video signal processing, the power consumption of which is lower than the μ PC659. The high speed and high quality bipolar processing technology has enabled fast conversion rate and high resolution to be achieved. Conversion rate is up to 20 Msps (sampling per second) and linearity error within ±0.5 LSB while operating at low power consumption. Wide variety of application can be realized in digital application field such as digital TV system and high speed facsimile.

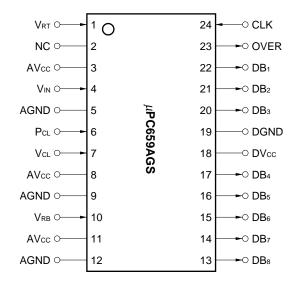
Also, this IC includes sample and hold circuit, clamp circuit and reference voltage generator, which enable simple external circuit to be constructed.

The μ PC659A and the μ PC659 are different in the number of clock pulses till transformed data is output after analog signal is captured. This should be taken into consideration when using the μ PC659A instead of the μ PC659. For details, refer to the timing chart.

FEATURES


- Resolution : 8-bit
- Conversion rate : 20 Msps
- Differential non-linearity : ±0.5 LSB MAX.
- Power supply : +5 V
- Analog input voltage : 1.0 V_{p-p}
- Power consumption : 215 mW TYP.
- Built-in circuit : Sample and hold circuit Clamp circuit (Clamp voltage and clamp pulse must be supplied.) Reference voltage generator (VRB = 2.3 V, VRT = 3.3 V TYP.)

ORDERING INFORMATION


Part Number	Package
μ PC659AGS	24-pin plastic SOP (300 mil)

The information in this document is subject to change without notice.

BLOCK DIAGRAM

PIN CONFIGURATION (Top View)

AGND	: Ground for Analog Circuit
AVcc	: Power Supply for Analog Circuit
CLK	: Clock
DB ₈ to DB ₁	: Digital Data Bus
DGND	: Ground for Digital Circuit
DVcc	: Power Supply for Digital Circuit
NC	: No Connection
OVER	: Digital Over Range
Pc∟	: Clamp Pulse
Vcl	: Clamp Voltage
Vin	: Analog Signal
Vrb	: Reference Voltage (Bottom)
Vrt	: Reference Voltage (Top)

PIN FUNCTIONS

Pin Name	Pin No.	Input/ Output	Function	Equivalent Circuit
Vrt	1	Input	Reference voltage (Top)	- AVcc 1.41 VRT Ο KΩ 800
Vrb	10	Input	Reference voltage (Bottom)	$ \begin{array}{c} \overline{777} \\ \hline \Omega \\ \hline \Omega \\ \hline 1.91 k\Omega \\ \hline AGND \\ \overline{777} \\ \hline AGND \\ \hline \end{array} \\ \begin{array}{c} \overline{8000} \\ \overline{777} \\ 77$
Vin	4	Input	Analog signal Input analog signal from this pin. The signal is read at rising edge of the clock. The clamp function also will be worked on this pin. So it's necessary to connect capacitance and low impedance signal source. The burst signal is protected at pedestal clamp because of soft clamp circuit.	AGND 777 AGND
Pcl	6	Input	Clamp pulse Analog signal input from analog input pin is clamped to the voltage; V _{CL} according to the high level term of this pulse. During high level signal is input, analog input pin voltage is nearly clamped to voltage V _{CL} .	AVcc AVcc AGND AGND
VcL	7	Input	Clamp voltage Set voltage at clamping analog input signal. Analog input signal is clamped nearly to this input voltage V _{CL} according to the clamp pulse P _{CL} high level period.	
CLK	24	Input	Clock Analog data acquisition and digital data out are synchronized with the rising edge of this clock.	AVcc AVcc AGND AGND
AVcc	3, 8, 11	_	Power supply for analog circuit	AVcc

Pin Name	Pin No.	Input/ Output	Function	Equivalent Circuit
AGND	5, 9, 12	-	Ground for analog circuit	0
DB ₈ to DB ₄ DB ₃ to DB ₁	13 to 17, 20 to 22	Output	Digital signal DB₀ is LSB, DB₁ is MSB.	
OVER	23	Output	Digital over range Overflow (active high).	
DVcc	18	_	Power supply for digital circuit	O DVcc
DGND	19	-	Ground for digital circuit	
NC	2	-	No Connection	o

ELECTRICAL SPECIFICATIONS

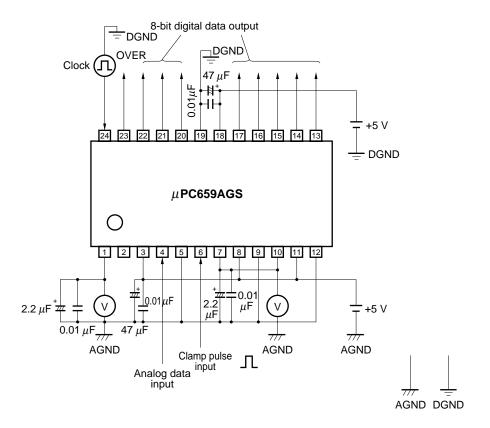
Absolute Maximum Ratings (T_A = 25 °C)

	Parameter Symbol Ratings		Ratings	Unit
	Supply voltage	AVcc, DVcc	-0.3 to +6.0	V
	Digital input voltage	Vind	-0.3 to DVcc + 0.3	V
	Analog input voltage VINA -		-0.3 to AVcc + 0.3	V
	Reference input voltage	Vrt, Vrb	-0.3 to AVcc + 0.3	V
	Clamp voltage	Vcl	-0.3 to AVcc + 0.3	V
	Clamp pulse input voltage	VPCL	-0.3 to AVcc + 0.3	V
*	Operating ambient temperature	TA	-20 to +70	°C
	Storage temperature	Tstg	-40 to +150	°C
	Power dissipation	Pd	560	mW

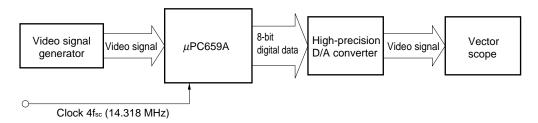
Caution Exposure to Absolute Maximum Ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The parameters apply independently. The device should be operated within the limits specified under DC and AC Characteristics.

I	Recommended Operating Cor	nditions (TA	a = −20 to +70 °C)
- 1	_		

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply voltage	AVcc, DVcc	AGND=DGND = 0 V	4.7	5.0	5.3	V
Supply voltage difference	AVcc-DVcc	AGND=DGND = 0 V		0	0.1	V
Analog input voltage	Vina	Vcc = 5.0 V	Vrb - 0.4		VRT + 0.4	V
Clamp input voltage	Vcl	Vcc = 5.0 V	Vrb – 0.4		Vrt + 0.4	V
Sampling clock	f _{samp}		1		20	MHz
Sampling clock high level pulse width	tрwн		25		500	ns
Sampling clock low level pulse width	t PWL		25		500	ns
Clock input high level voltage	Vскн		2.0			V
Clock input low level voltage	Vckl				0.8	V
Clamp pulse width	t PWCL		1.0			μs
Clamp pulse input high level voltage	Vpclh		2.0			V
Clamp pulse input low level voltage	VPCLL				0.8	V
Clamp capacitance	CCL			10		μF
Maximum analog input frequency	fain			8		MHz


*

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply current	lcc	Vcc = 5.0 V, T _A = 25 °C	26	43	62	mA
Resolution	RES			8		bit
Non-linearity	NL	$\label{eq:Vcc} \begin{array}{l} V_{CC} = 5.0 \ V, \ T_{A} = 25 \ ^{\circ}C \\ \\ V_{IN} = 1.0 \ V_{p\text{-}p}, \ f_{samp} = 20 \ MHz \end{array}$			±1.5	LSB
Differential non-linearity	DNL	$\label{eq:Vcc} \begin{array}{l} V_{CC} = 5.0 \ V, \ T_{A} = 25 \ ^{\circ}C \\ \\ V_{IN} = 1.0 \ V_{p\text{-}p}, \ f_{samp} = 20 \ MHz \end{array}$			±0.5	LSB
Differential gain	DG	f _{samp} = 14.318 MHz NTSC ramp wave (40 IRE)		1.5	3	%
Differential phase	DP	f _{samp} = 14.318 MHz NTSC ramp wave (40 IRE)		0.8	3	deg
Digital data output delay time	to	Delay time from rising edge of sampling clock. DB1 to DB8, OVER, CL = 15 pF	12	20	35	ns
Digital output low level voltage	Vol	IoL = 1.6 mA DB1 to DB8, OVER			0.4	V
Digital output high level voltage	Vон	Іон = −400 μA DB1 to DB8, OVER	2.7			V
Digital input low level current	Indl	VIN = 0.8 V			-200	μA
Digital input high level current	Iindh	VIN = 2.0 V			10	μA
Analog input current	lina	Measure input current from analog input pin		10	35	μA
Reference voltage (Bottom)	Vrb	Vcc = 5.0 V	2.1	2.3	2.5	V
Reference voltage (Top)	Vrt	Vcc = 5.0 V	3.1	3.3	3.5	V
Analog input equivalent capacitance	Cin	Vin = Vrb		3		pF
Clock input equivalent capacitance	Ссік			2		pF
Reference voltage (Difference)	Vref	Vrt – Vrb, Vcc = 5.0 V		1		V


DC Characteristics and AC Characteristics (T_A = -20 to +70 °C, AVcc = DVcc = 5.0 \pm 0.3 V)

Caution The values of Icc and t_D are different between the μPC659 and the μPC659A

Test Circuit

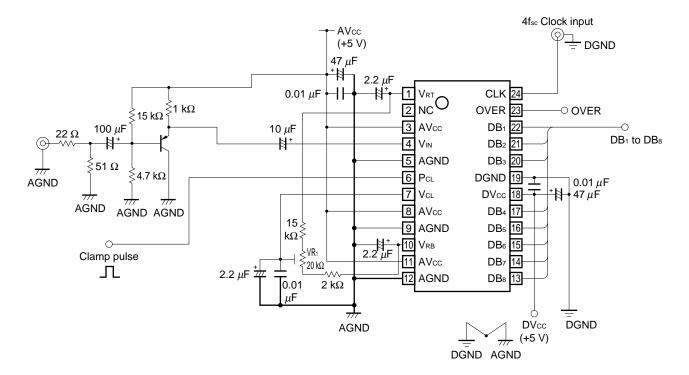
DG, DP Test Block

Remark The video signal from the video signal generator is NTSC, 40 IRE ramp signal.

Timing Chart

Analog signal is captured at the rising edge, and converted data will be output at the rising edge after 1 clock pulse^{Note}.

Note For the μ PC659, 2 clock pulses.


Caution The value of data output delay time (t_b) is different between the μ PC659 and the μ PC659A.

Output Code for Analog Input

	Output digital code								
Analog input	OVER	DB1 (MSB)	DB2	DB₃	DB4	DB₅	DB6	DB7	DB₃ (LSB)
VRB to 1/2 LSB	0	0	0	0	0	0	0	0	0
1/2 LSB to (1 + 1/2) LSB	0	0	0	0	0	0	0	0	1
to	to	to	to	to	to	to	to	to	to
(254 + 1/2) LSB to (255 + 1/2) LSB	0	1	1	1	1	1	1	1	1
(255 + 1/2) LSB to VRT	1	1	1	1	1	1	1	1	1
VRT to AVcc	1	1	1	1	1	1	1	1	1

Remark LSB $\Rightarrow \frac{V_{RT} - V_{RB}}{256} \Rightarrow 3.906 \text{ mV TYP.}, V_{RB} = 2.3 \text{ V TYP.}, V_{RT} = 3.3 \text{ V TYP.}$

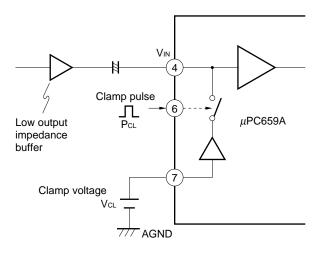
APPLICATION CIRCUIT EXAMPLE

- Remarks 1. VR1: Clamp voltage adjustment
 - 2. Must be thick line wiring for the power supply lines. And reduce the resistance and reactance ingredient.

AVcc and DVcc must be connected at one point.

AGND and DGND must be connected at one point.

ATTENTION FOR APPLICATION


• Converted data output

Analog signal is captured at the rising edge, and converted data will be output at the rising edge after 1 clock pulse. For the μ PC659, 2 clock pulses.

• Analog input terminal

In case the pedestal level is clamped, the clamp circuit uses the soft clamp circuit to protect the burst level. However, if a high impedance output is connected to the V_{IN} pin (pin 4), the burst level will be reduced (for example, for an external impedance of 10 Ω , the burst level is reduced by approx. 3 %).

Therefore, connect the lowest possible impedance signal to the analog signal input pin.

• If don's use the clamp circuit

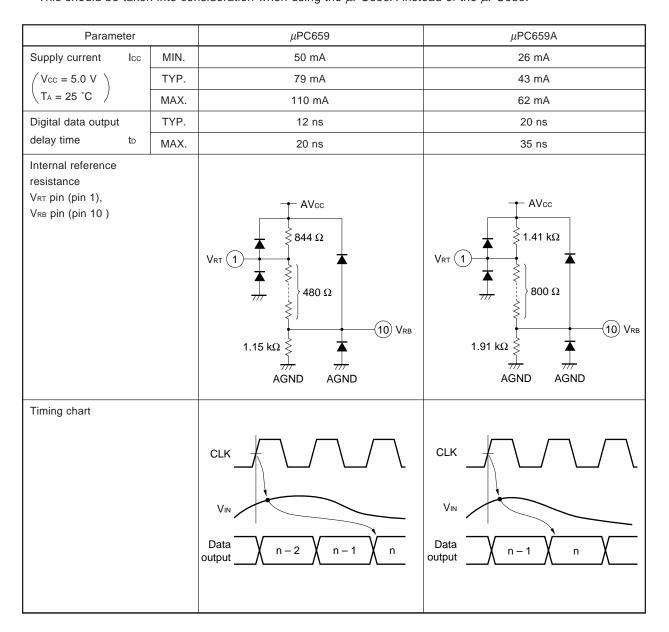
 P_{CL} pin (pin 6) and GND must be short-circuit. And insert by-pass capacitor of about 0.1 μ F between the V_{CL} pin (pin 7) and GND. Input analog signal to V_{IN} pin (pin 4).

In case an external clamp circuit is used, connect the P_{CL} pin (pin 6) to GND, and leave the V_{CL} pin (pin 7) unconnected. Set the voltage of the V_{IN} pin (pin 4) between 2.3 V and 3.3 V.

Clamp voltage

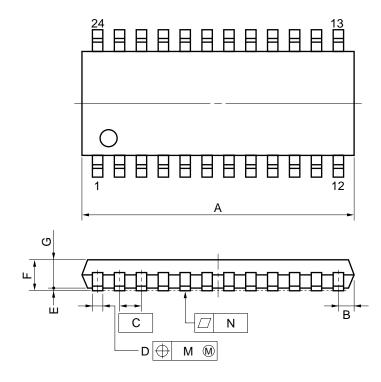
There is a few difference clamp voltage between the supply clamp voltage V_{CL} (pin 7) and really clamp voltage. Really clamp voltage = V_{CL} + α

Take account of the α (about ± 20 mV) at supply VcL to pin 7.

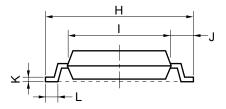

- When reference voltage is set from external, VRB (pin 10) = 2.3 V, VRT (pin 1) = 3.3 V .
- Circuit current

	TYP. (Unit: mA)
Analog circuit current	37
Digital circuit current	6
Sum	43

- Set the sampling clock frequency between 1 MHz and 20 MHz. If a frequency outside this range is used, the internal sample-and-hold circuit will not function properly.
- First apply 5 V to the AVcc pins (pins 3 and 11) and the DVcc pin (pin 18), then input the analog signal to the V_{IN} pin (pin 4). If the analog signal is input first, the output data may latch up.


DIFFERENCE BETWEEN THE μPC659 and the μPC659A

The following table shows the differences between the μ PC659 and the μ PC659A. This should be taken into consideration when using the μ PC659A instead of the μ PC659.


PACKAGE DRAWING

24 PIN PLASTIC SOP (300 mil)

detail of lead end

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	15.54 MAX.	0.612 MAX.
В	0.78 MAX.	0.031 MAX.
С	1.27 (T.P.)	0.050 (T.P.)
D	$0.40^{+0.10}_{-0.05}$	$0.016^{+0.004}_{-0.003}$
Е	0.1±0.1	0.004±0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
Н	7.7±0.3	0.303±0.012
I	5.6	0.220
J	1.1	0.043
к	$0.20^{+0.10}_{-0.05}$	$0.008^{+0.004}_{-0.002}$
L	0.6±0.2	$0.024^{+0.008}_{-0.009}$
М	0.12	0.005
Ν	0.10	0.004
Р	3° ^{+7°} -3°	3° ^{+7°} -3°

P24GM-50-300B-4

RECOMMENDED SOLDERING CONDITIONS

When soldering this product, it is highly recommended to observe the conditions as shown below. If other soldering processes are used, or if the soldering is performed under different conditions, please make sure to consult with our sales offices.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (C10535E).

Surface mount device

μ PC659AGS :	24-pin plastic	SOP (300 mil)
---------------------	----------------	---------------

Process	Conditions	Symbol
Infrared ray reflow	Peak temperature: 235 °C or below (Package surface temperature), Reflow time: 30 seconds or less (at 210 °C or higher), Maximum number of reflow processes: 2 times.	IR35-00-2
Vapor phase soldering	Peak temperature: 215 °C or below (Package surface temperature), Reflow time: 40 seconds or less (at 200 °C or higher), Maximum number of reflow processes: 2 times.	VP15-00-2
Wave Soldering	Solder temperature: 260 °C or below, Flow time: 10 seconds or less, Pre-heating temperature: 120 °C or below (Package surface temperature), Maximum number of flow processes: 1 time.	WS60-00-1
Partial heating method	Pin terminal temperature: 300 °C or below, Heat time: 3 seconds or less (Per each side of the device).	-

Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress.

[MEMO]

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.