

BIPOLAR ANALOG INTEGRATED CIRCUIT μ PC8139GR-7JH

Single Chip Transceiver Silicon MMIC for PHS

DESCRIPTION

The μ PC8139GR-7JH is a silicon microwave monolithic IC (SiMMIC) developed as a transceiver for Personal Handyphone System (PHS).

This IC is a highly integrated single chip, suitable for PHS, including a quadrature modulator, up converter, and AGC circuit for adjusting the output level in the transmitter block, a 2nd down converter and RSSI circuit in the receiver block, and a transistor for 2nd VCO.

This low power IC employs NEC's proprietary bipolar process NESATTM IV ($f_T = 20$ GHz) and also has a built-in power save function, which contributes to lowering power consumption of the RF block.

This IC is packaged in a small, thin 30 pin plastic TSSOP (225 mil).

FEATURES

· Low voltage operation, low current consumption

Vcc = 2.7 to 4.0 V, Icc = 32.5 mA at transmitter, Icc = 4.8 mA at receiver, 3.2 mA/@Vcc = 3 V at 2nd VCO block

• LPF is installed to suppress leakage of transmitter's local (L01) harmonics.

Spurious within transmission band (LO1 × 7, 8): -55 dBc (MAX.)

- On-chip AGC circuit for adjusting the output level: GCR = 20 dB (MIN.) /@fRFout = 1906.55 MHz
- High-performance

Output level: Presut = -13 dBm (TYP.) /@fresut = 1906.55 MHz, VI/Q = 500 mVP-P (Differential phase)

Error vector magnitude: EVM = 1.0% rms (TYP.)

Adjacent channel leak power: $P_{adj} = -68 \text{ dBc (TYP.)} / @ \Delta f = \pm 600 \text{ kHz}$

RSSI output dynamic range: 83 dB

· CR phase shifter is adopted.

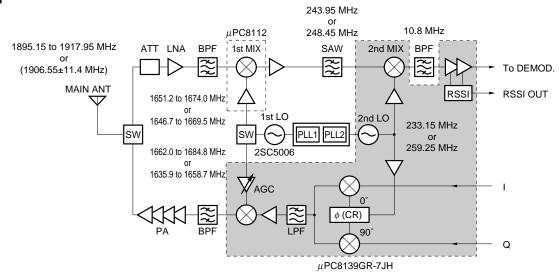
APPLICATION

Digital cordless telephone: PHS

• PHS application equipment: PDA, PC card, etc.

ORDERING INFORMATION

Part Number	Package	Supplying Form			
μPC8139GR-7JH-E1	30-pin plastic TSSOP (225 mil)	Embossed tape 16 mm-wide. Pin 1 is in pull-out direction. 2.5 kp/reel			

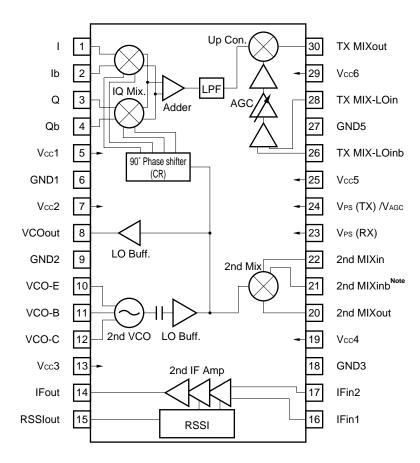

Remark To order evaluation samples, contact your local NEC sales office. (Part Number for sample order: μ PC8139GR-7JH)

Caution This product is an electrostatic sensitive device.

The information in this document is subject to change without notice.

SYSTEM APPLICATION EXAMPLE

[PHS]



QUADRATURE MODULATOR IC SERIES PRODUCT LIST

Part Number	Function	Icc (mA)	f _{LO1in} (MHz)	f _{MODout} (MHz)	Up Converter f _{RFout} (MHz)	Phase Shifter Type	Application Field	Package
μPC8101GR	150-MHz quadrature modulator	15 /@2.7 V	100 to 300	50 to 150	External	F/F	CT-2, etc.	20 pin SSOP
μPC8104GR	RF up converter + IF quadrature modulator	28 /@3.0 V	100 t	o 400	900 to 1900	Multiplier + F/F	Various digital communica- tions	(225 mil)
μPC8105GR	400-MHz quadrature modulator	16 /@3.0 V	100 t	o 400	External	Multiplier + F/F	Various digital communica- tions	16 pin SSOP (225 mil)
μPC8110GR	1-GHz direct quadrature modulator	24 /@3.0 V	800 to 1000		Direct modulation	Multiplier + F/F	PDC800 MHz, etc.	20 pin SSOP
μPC8125GR	On-chip AGC function RF up converter + IF quadrature modulator	36 /@3.0 V	220 t	o 270	1800 to 2000	Multiplier + F/F	PHS	(225 mil)
μPC8126GR	On-chip local PreMIX 1-GHz direct	35			Direct	Multiplier	PDC800	1
μPC8126K	quadrature modulator	/@3.0 V	915 t	o 960	modulation	+ F/F	MHz, etc.	28 pin QFN
μPC8129GR	LO × 2 frequency input type IF quadrature modulator + RF up converter	28 /@3.0V	200 to 100 to 800 400		800 to 1900	F/F	GSM, DCS1800, etc.	20 pin SSOP (225 mil)
μPC8158K	On-chip AGC function RF up converter + IF quadrature modulator	28 /@3.0 V	100 t	o 300	800 to 1500	CR	PDC800 M/1.5 G	28 pin QFN

For an outline of the quadrature modulator IC series, see the application note "Usage of μ PC8101, 8104, 8105, 8125, and 8129" (document number P13251E).

INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS (Top View)

Note Pin 21 was specified to function as the GND4 in the initial design sample, however in subsequent design samples and commercial products it functions as the 2nd MIXinb.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power supply voltage	Vcc	Pins 5, 7, 12, 13, 19, 25, 29, 30 T _A = +25°C	4.5	V
Power save pin voltage	V _{PS}	Pin 23, Pin 24, T _A = +25°C	4.5	V
Power dissipation	PD	$T_A = +80^{\circ}C^{Note}$	TBD	mW
Operating ambient temperature	TA		-30 to +80	°C
Storage temperature	T _{stg}		-55 to +150	∘C
Pin current of Pin 8	l8 pin		4	mA
Pin current of Pin 10	I _{10 pin}		4	mA
Collector to base voltage in VCO	Vсво	Pin 12 → Pin 11	4.5	V
Collector to emitter voltage in VCO	VCEO	Pin 12 → Pin 10	4.5	V
Emitter to base voltage in VCO	VEBO	Pin 10 → Pin 11	3.0	V

Note When mounted on $50 \times 50 \times 1.6$ mm double sided copper clad epoxy glass board

RECOMMENDED OPERATING RANGE

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Power supply voltage	Vcc	Pins 5, 7, 12, 13, 19, 25, 29, 30	2.7	3.0	4.0	V
Power save pin voltage	Vps	Pin 23, Pin 24	0	-	Vcc	V
Operating ambient temperature	TA		-30	+25	+80	°C
TX up converter output frequency	fTX • MIXout		1800	-	2000	MHz
TX up converter LO input frequency	fTX • MIX-LOin	P⊤x • MIX-LOin = −10 dBm	1500	-	1800	MHz
TX up converter input frequency	f _{TX} • MIXin		220	-	270	MHz
IQ-MOD output frequency	fMODout					
2nd VCO oscillating frequency (IQ-MOD LO, 2nd MIX LO input frequency)	f2ndVCO (fMOD • LOin, f2ndMIX-LOin)					
2nd MIX input frequency	f _{2ndMlXin}					
2nd MIX output frequency	f _{2ndMlXout}		8	10.8	12	MHz
2nd IF amplifier input frequency	f _{2ndIFin}		8	10.8	12	MHz
2nd IF amplifier output frequency	f _{2ndIFout}					
I/Q input frequency	fI/Qin	V _{VQin} = 600 mV _{P-P} (MAX.), Double phase	DC	-	10	MHz
TX up converter LO input level	PTX • MIX-LOin		-15	-10	- 5	dBm
2nd MIX input level	P _{2ndMIXin}		-90	_	-10	dBm
2nd IF amplifier input level	P _{2ndlFin}		23	_	108	$dB\muVEMF$
I/Q input amplitude	VI/Qin	Double phase input I/Q (DC) = Ib/Qb (DC) = Vcc/2	-	500	600	mV _{P-P}

ELECTRICAL SPECIFICATIONS (1)

 $T_{A} = +25^{\circ}C, \ V_{CC} = 3.0 \ V, \ unless \ otherwise \ specified, \ V_{PS-TX}/V_{AGC} = 3.0 \ V, \ V_{PS-RX} = 3.0 \ V \ (high), \ I/Q \ (DC) = Ib/Qb \ (DC) = V_{CC}/2 = 1.5 \ V, \ V_{I/Qin} = 500 \ mV_{P-P} \ (double \ phase input), \ f_{I/Qin} = 24 \ kHz, \ \pi/4DQPSK \ modulated \ wave input Transmission \ rate: 384 \ kbps, \ Filter \ roll-off \ rate: \alpha = 0.5, \ MOD \ pattern: all \ zero, \ f_{MOD \cdot LOin} = 233.15 \ MHz, \ P_{MODLOin} = -7 \ dBm, f_{TX \cdot MIX-LOin} = 1673.4 \ MHz, P_{TX \cdot MIX-LOin} = -10 \ dBm, f_{TX \cdot MIX-LOin} = 1906.55 \ MHz + f_{I/Qin}$

Paramete	er	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Total characteristics							
Total circuit current (TX VCO)	X + RX +	ICC (TOTAL)	No signal input	33	40.5	49	mA
Transmitter block total	characteristics (quadrature modu	llator + up converter + AGC circu	ıit)			
Total circuit current (T)	X)	ICC (TX-TOTAL)	No signal input	27	32.5	39.5	mA
Dark current at power	save (TX)	ICC (PS) TX-TOTAL	V _{PS} ≤ 0.5 V (Low), No signal input	-	0.1	5	μΑ
Transmitter block (qua	drature modulat	or + up converter	+ AGC circuit)				
Total output level		PTX • MIXout	Vagc = 3.0 V	-17	-13	-	dBm
Local carrier leak		LOL	fMODin • LOin + fTX • MIX-LOin	-	-40	-30	dBc
Image rejection (side-b	and leak)	ImR		-	-40	-30	dBc
I/Q 3rd order inter-mod distortion	dulation	IM3 (I/Q)		-	-50	-30	dBc
AGC circuit gain contro	ol range	GCR	$V_{AGC} = 3 \text{ V} \rightarrow 1 \text{ V}$	20	35	-	dB
Error vector magnitude	e (vector error)	EVM	MOD pattern: PN 9	-	1.0	5	%rms
Adjacent channel leak	power	P _{adj}	Δ f = ±600 kHz, MOD pattern: PN 9	-	-68	-60	dBc
Spurious within transm	ission band 1	Pout (7 MOD• LO)	fmod • LOin = 259.25 MHz fmod • LOin × 7, fmod • LOin × 7 (Image)	_	-65	-55	dBc
Spurious within transm	ission band 2	Pout (8 MOD• LO)	fmod • Loin = 233.15 MHz fmod • Loin × 8, fmod • Loin × 8 (Image)	-	– 65	- 55	dBc
Power saving	Rise time	TPS-TX (Rise)	$V_{PS-TX} = 0 V \rightarrow 3 V$	-	2	5	μs
response time	Fall time	TPS-TX (Fall)	$V_{PS-TX} = 3 V \rightarrow 0 V$	-	2	5	μs
I/Q input impedance		Z _{I/Q}	Value between Pins I/Ib and Q/Qb	-	180	-	kΩ
I/Q input bias current		Iνα	Value of each pin when $V_{I} = V_{Ib} = V_{Q} = V_{Qb}$	3.5	7	16	μΑ
Power save low Not	e 1	VPS-TX (Low)		0	-	0.5	V
Power save high	te 2	VPS-TX (High)		0.9	_	Vcc	V

Notes 1. Power save pin applied voltage in sleep mode

2. Power save pin applied voltage in active mode

ELECTRICAL SPECIFICATIONS (2)

 $T_A = +25 ^{\circ}\text{C}, \text{ Vcc} = 3.0 \text{ V}, \text{ unless otherwise specified}, \text{ Vps} = 3.0 \text{ V} \text{ (high)}, \text{ } f_{2ndMIXin} = 243.95 \text{ MHz}, \text{ } P_{2ndMIXin} = -40 \text{ dBm}, \text{ } f_{2ndMIX-LOin} = 233.15 \text{ MHz}, \text{ } P_{2ndMIX-LOin} = -7 \text{ dBm}, \text{ } f_{2ndMIXout} = 10.8 \text{ MHz}, \text{ } f_{2ndIFin} = 10.8 \text{ MHz}, \text{ } P_{2ndIFin} = -15 \text{ dBm}, \text{ } f_{2ndIFout} = 10.8 \text{ MHz}$

Paramete	er	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Receiver block total	Receiver block total characteristics						
Total circuit current (RX)		ICC (RX-TOTAL)	No signal input	3.5	4.8	6	mA
Dark current at power	er save	ICC (PS-RX TOTAL)	V _{PS-RX} ≤ 0.3 V (Low), No signal input	I	0.1	5	μΑ
Power save	Rise time	TPS-RX (Rise)	$V_{PS-RX} = 0 \text{ V} \rightarrow 3 \text{ V}$	ı	2	5	μs
response time	Fall time	TPS-RX (Fall)	$V_{PS-RX} = 3 \text{ V} \rightarrow 0 \text{ V}$	-	2	5	μs
Power save low	Note 1	VPS-RX (Low)		0	-	0.3	V
Power save high	Note 2	VPS-RX (High)		2.5	-	Vcc	V
Receiver block 1 (2r	nd down conve	rter)					
2nd MIX conversion	gain	CG _{2ndMIX}	Combining capacitance with SG	6	10	14	dB
1-dB compression o	utput level	P _{1dB2ndMIX}		ı	93	-	dB μ V
Input 3rd order intere	cept point	IIP3 (2ndMIX)	f _{2ndMlXin1} = 243.95 MHz, f _{2ndMlXin2} = 244.25 MHz	ı	94	_	dΒμV
2nd MIX noise figure	Э	NF _{2ndMIX}	At I/O LC matching	-	8	-	dB
2nd MIX local leak 1		ISL (2ndLO)1	Pin 10 input –7-dBm input Note 3	-	52	-	dΒμV
2nd MIX local leak 2	2	ISL (2ndLO)2	Pin 10 input –7-dBm input	-	24	-	dΒμV
2nd MIX output resis	stance	Z _{2ndMlXout}	Pin 20	ı	330	_	Ω
Receiver block 2 (IF	amplifier)						
Limiting sensitivity		SL	-3 dB point	1	27	32	dBμVEM F
2nd IF amplifier gain	1	Gv	$P_{2ndlFin} = 13 dB \mu VEMF$	-	80	-	dB
2nd IF amplifier pha	se shift	Sp	$P_{2ndlFin} = 63 \text{ to } 98 \text{ dB}\mu\text{VEMF}^{\text{Note 5}}$	-	6	_	deg
2nd IF amplifier outp	out amplitude	Vo	10 kΩ//10 pF ^{Note 6}	0.5	0.62	0.75	V _{P-P}
2nd IF amplifier outp	out	tr		-	13	25	ns
2nd IF amplifier outp	2nd IF amplifier output			ı	10	20	ns
2nd IF amplifier inpu	2nd IF amplifier input resistance		Pin 16, Pin 17	_	330	_	Ω
2nd IF amplifier input capacitance		Cin	Pin 16, Pin 17	-	TBD	-	pF
2nd IF amplifier outp	out duty ratio	Vo (duty)		-	52	_	%
2nd IF amplifier outp	out bias level	Vo (DC)		-	1.5	_	V

Notes 1. Power save pin applied voltage in sleep mode

- 2. Power save pin applied voltage in active mode
- 3. Leak to 2nd MIX output pin (Pin 20) of 2nd MIX-LO
- 4. Leak to 2nd MIX input pin (Pin 22) of 2nd MIX-LO
- **5.** RBW of network analyzer = 3 Hz
- 6. 10 pF is a value including all capacitance connected to the pins (wiring pattern)

ELECTRICAL SPECIFICATIONS (3)

 $T_A = +25 ^{\circ}\text{C}, \text{ Vcc} = 3.0 \text{ V}, \text{ unless otherwise specified, VPs} = 3.0 \text{ V} \text{ (high)}, \text{ } f_{2ndMIXin} = 243.95 \text{ MHz}, \text{ } P_{2ndMIXin} = -40 \text{ dBm}, \text{ } f_{2ndMIX-LOin} = 233.15 \text{ MHz}, \text{ } P_{2ndIFin} = -15 \text{ dBm}, \text{ } f_{2ndMIXout} = 10.8 \text{ MHz}, \text{ } f_{2ndIFin} = 10.8 \text{ MHz}, \text{ } P_{2ndIFin} = -15 \text{ dBm}, \text{ } P_{2ndIFout} = 10.8 \text{ MHz}$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Receiver block 3 (RSSI)						
RSSI linearity	LR	$V_{IF} = 33 \text{ to } 98 \text{ dB}\mu\text{VEMF}$	-	±1.5	±2.0	dB
RSSI slope	SR		-	28	-	mV/dB
RSSI intercept	IR		_	4	_	$dB\muVEMF$
RSSI output voltage 1	V _{R1}	$V_{2ndlFin} = 33 \text{ dB}\mu\text{VEMF}$	0.6	0.8	1	V
RSSI output voltage 2	V _{R2}	$V_{2ndlFin} = 63 \text{ dB}\mu\text{V}$	1.44	1.68	1.92	V
RSSI output voltage 3	VR3	$V_{2ndlFin} = 98 \text{ dB}\mu\text{V}$	2.4	2.7	2.9	٧
RSSI output voltage 4	V _{R4}	No signal input		0.5	_	V
RSSI output temperature stability	ST	$T_A = -30$ °C to +80°C	-	±2.0	-	dB
RSSI output dynamic range	DR		75	83	-	dB
RSSI rise time	t _{rf1}		-	1	5	μs
RSSI fall time	t _{rf2}			1	5	μs
RSSI output ripple	RR	10 pF ^{Note}	-	30	_	mV _{P-P}
RSSI output resistance	Ror		28	35	42	kΩ

Note 10 pF is a value including all capacitance (wiring capacitance) connected to the pins

ELECTRICAL SPECIFICATIONS (4)

 $T_A = +25^{\circ}C$, $V_{CC} = 3.0 \text{ V}$

Parameter	Symbol Condition		MIN.	TYP.	MAX.	Unit
Common block (2nd VCO)	Common block (2nd VCO)					
Total circuit current (2nd VCO)	Icc (2ndVCO)	$3~{\rm k}\Omega$ is attached to pin 10 externally (without pull-down resistance for pin 8)	2.5	3.2	3.5	mA
2nd VCO output level	P _{2ndVCO}	Pin 8 pull-down resistance is 1 k Ω	-10	ı	ı	dBm
2nd VCO oscillating frequency	f _{2nd} VCO		220	-	270	MHz

PIN FUNCTIONS

Pin No.	Symbol	Applied Voltage (V)	Pin Note Voltage (V)	Function and Description	Internal Equivalent Circuit
1	I	Vcc/2	-	Input pin for I signal. The input impedance is about 180 k Ω .	
2	lb	Vcc/2	-	Input pin for Ib signal. The input impedance is about 180 k Ω . Single ended input is also possible. In the case of single ended input, input only the DC voltage of Vcc/2.	1 470 Ω 470 Ω 2 1.2 kΩ
3	Q	Vcc/2	-	Input pin for Q signal. The input impedance is about 180 $k\Omega$.	+ + + + + + + + + + + + + + + + + + + +
4	Qb	Vcc/2	-	Input pin for Qb signal. The input impedance is about $180 \text{ k}\Omega$. Single ended input is also possible. In the case of single ended input, input only the DC voltage of Vcc/2.	3 470 \(\Omega\) 470 \(\Omega\) 470 \(\Omega\) 470 \(\Omega\) 7 \(\ome
5	Vcc1	2.7 to 4.0	_	Power supply voltage pin for the quadrature modulator block.	
6	GND1	0	_	Ground pin for the quadrature modulator block. Form as wide a ground pattern as possible to minimize its impedance.	
7	Vcc2	2.7 to 4.0	-	Power supply voltage pin for the VCO block.	
8	VCOout	-	1.6	Oscillator output pin. The output level can be adjusted with an external pull-down resistor.	**************************************
9	GND2	0	_	Ground pin for the VCO block. Form as wide a ground pattern as possible to minimize its impedance.	
10	VCO_E	-	2.1	Emitter pin for oscillator. Ground with an external pull-down resistor. It can be oscillated by performing feedback with a resonance circuit mounted externally between this pin and Pin 11.	
11	VCO_B	_	2.9	Base pin for oscillator. It can be oscillated by performing feedback with a resonance circuit mounted externally between this pin and Pin 10.	
12	VCO_C	2.7 to 4.0	_	Collector pin for oscillator. Open collector.	

: External attachment

Note The pin voltage is measured on Vcc=3.0 V.

PIN FUNCTIONS

Pin No.	Symbol	Applied Voltage (V)	Pin Note Voltage (V)	Function and Description	Internal Equivalent Circuit
13	Vcc3	2.7 to 4.0	-	Supply voltage pin for the IF amplifier and RSSI block.	
14	IFout	-	1.5	Output pin for the IF amplifier.	1 1 1 1 1 1 1 1 1 1
15	RSSlou t	-	0.5 (No input signal)	Output pin for the RSSI. The output resistance is about 35 $k\Omega.$	35 kΩ * π
16	IFin1	_	1.9	Input pin for the IF amplifier. The input resistance is about 330 Ω .	(B)
17	IFin2	_	1.9	Input pin for the IF amplifier. The input resistance is about 330 Ω .	
18	GND3	0	_	Ground pin for the IF amplifier, RSSI block, and 2nd down converter block. Form as wide a ground pattern as possible to minimize its impedance.	
19	Vcc4	2.7 to 4.0	-	Power supply voltage pin for the 2nd down converter block.	
20	2nd MIXout	-	1.5	Output pin for the 2nd down converter. The output resistance is about 330 Ω .	20
21	2nd MIXinb	_	1.9	Bypass pin for the 2nd down converter block. Ground this pin through an external capacitor.	2)
22	2nd MIXin	_	1.9	Input pin for the 2nd down converter. High impedance input.	* * * * * * * * * * * * * * * * * * * *

: External attachment

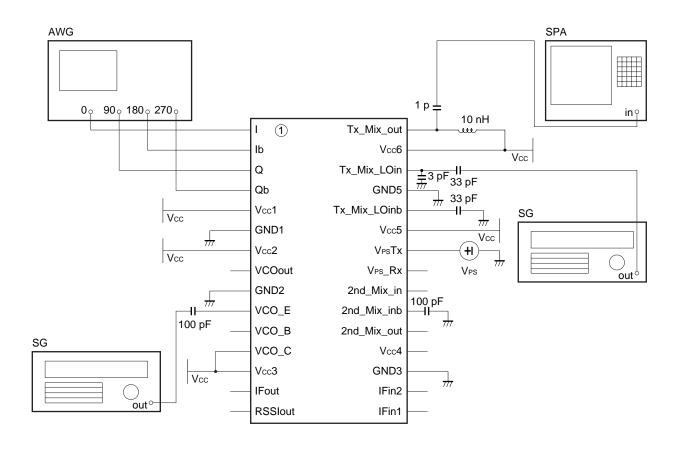
Note The pin voltage is measured on Vcc=3.0 V.

PIN FUNCTIONS

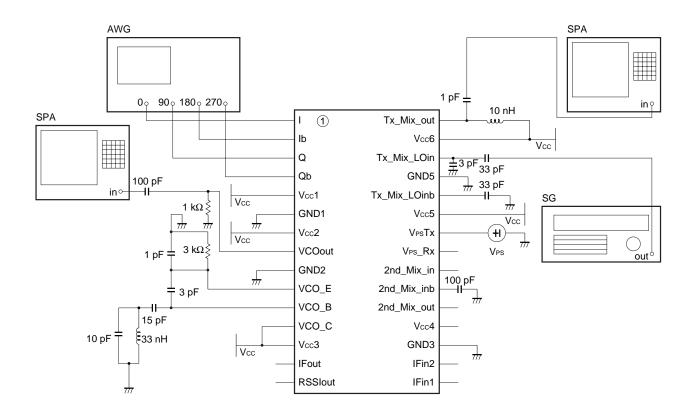
PIN F	UNCTIONS		ſ		
Pin No.	Symbol	Applied Voltage (V)	Pin Note Voltage (V)	Function and Description	Internal Equivalent Circuit
23	VPS (RX)	0 to Vcc	_	Power save pin for the receiver block (IF amplifier, RSSI, 2nd down converter). This pin is interlocked to the internal regulator and can control the following. VPS (V) IC stat 2.5 to Vcc ON (Active Mode) 0 to 0.3 OFF (Sleep Mode)	
24	Vps (TX)/ Vagc	0 to Vcc	-	Power save pin for the transmitter block (quadrature modulator, up converter, AGC circuit). This pin is interlocked to the internal regulator and can control the following. VPS (V) IC stat 0.9 to Vcc ON (Active Mode) 0 to 0.5 OFF (Sleep Mode)	
25	Vcc5	2.7 to 4.0	_	Supply voltage for the AGC block.	
26	TX MIX- LOinb	-	2.0	Bypass pin for the local input of the up converter. Ground this pin through an external capacitor.	* * * 28
28	TX MIX- LOin	ı	2.0	Local input pin for the up converter. High impedance input.	26
27	GND5	0	-	Ground pin for the AGC and up converter. Form as wide a ground pattern as possible to minimize its impedance.	
29	Vcc6	2.7 to 4.0	-	Supply voltage pin for the up converter block.	29 + 30 + H-
30	TX MIXout	2.7 to 4.0	-	RF output pin for the up converter block. This is an open collector output, so an impedance matching circuit should be attached externally.	• • • • • • • • • • • • • • • • • • •

: External attachment

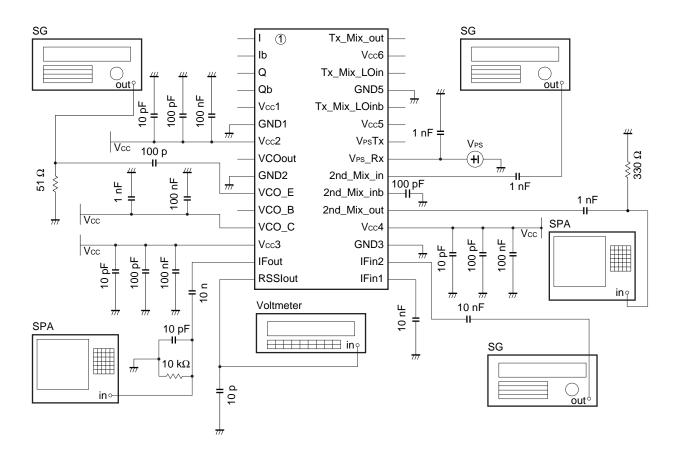
Note The pin voltage is measured on Vcc=3.0 V.

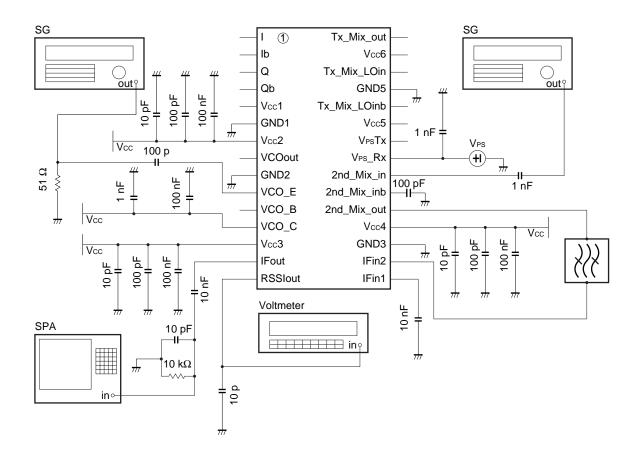

RELATION BETWEEN I/Q PIN INPUT SIGNAL POTENTIAL AND UPPER LIMIT AMPLITUDE

Power Supply Voltage (V)	I/Q bias voltage (V)	Input Amplitude (mV _{P-P})			
Vcc	Vcc/2 = I = Ib = Q = Qb	Single ended Input I = Q	Differential Phase Input $I = Ib = Q = Qb$		
2.7	1.35	≤400	≤600		
to	to				
3.0	1.5	≤800	≤600		
to	to				
4.0	2.0	≤1000	≤600		

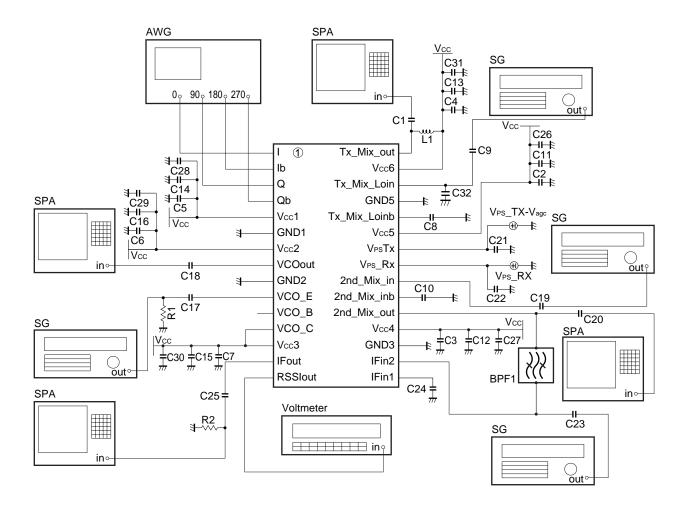

COMPARISON OF I/Q INPUT AMPLITUDES IN THE SAME TX OUTPUT LEVEL

Power Supply Voltage (V)	I/Q bias voltage (V) Vcc/2 = I = Ib = Q = Qb	Input Amplitude (mV _{P-P})		Reference Characteristics
Vcc		Single ended Input I = Q	Differential Phase Input I = Ib = Q = Qb	TX Total Output Level (dBm) PTX-MIXout
2.7	1.35	400	200	-20
3.0	1.5	800	400	-14
4.0	2.0	1200	600	-10.5

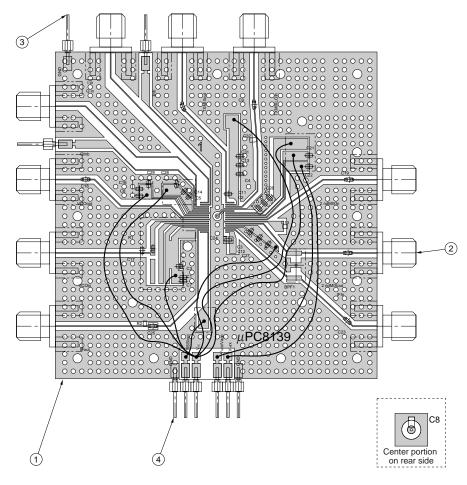

Transmitter Block (Quadrature Modulator + Up Converter + AGC Circuit)


Transmitter Block + Common Block (Quadrature Modulator + Up Converter + AGC Circuit + 2nd VCO)

Receiver Block (2nd Down Converter + 2nd IF Amplifier + RSSI)



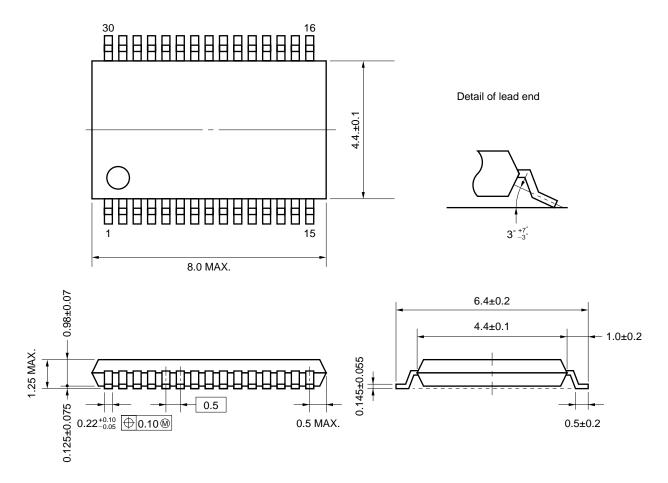
Receiver Block (2nd Down Converter + 2nd IF Amplifier + RSSI)


15

TEST CIRCUIT TOTAL CONFIGURATION

EXAMPLE OF THE TEST CIRCUIT MOUNTED ON PRINTED CIRCUIT BOARD

Parts List


Symbol	Name	Value	Model name • Specifications	Manufacturer	Quantity
BPF1	BPF		CFEC10.8 MK1	Murata Mfg.	1
L1	Chip inductor	10 nH	TFL0816-10N	SSM	1
R2	Chip resistor	10 kΩ	RR0816R-103-D	SSM	1
R1	Chip resistor	51 Ω	RR0816R-510-D	SSM	1
C32	Chip capacitor	3 pF	GRM39B030J50PB	Murata Mfg.	1
C26 to 31	Chip capacitor	100 nF	GRM39B104J50PB	Murata Mfg.	6
C23 to 25	Chip capacitor	10 nF	GRM39B103J50PB	Murata Mfg.	3
C19 to 22	Chip capacitor	1 nF	GRM39B102J50PB	Murata Mfg.	4
C10 to 18	Chip capacitor	100 pF	GRM39B101J50PB	Murata Mfg.	8
C8 to 9	Chip capacitor	33 pF	GRM39B330J50PB	Murata Mfg.	2
C2 to 7	Chip capacitor	10 pF	GRM39B100J50PB	Murata Mfg.	7
C1	Chip capacitor	1 pF	GRM39B010J50PB	Murata Mfg.	1
4	PCC pin		A2-3PA-2.54DSA	Hirose Electric	2
3	PCC pin		A2-1PA-2.54DSA	Hirose Electric	3
2	SMA connector		142-0701-881	JHONSON	10
1	Polyimide substrate		R4775 (t0.2)	Matsushita Electric Works	1

Notes on the board

- (1) Copper patterning on a polyimide board of $76 \times 76 \times 0.2$ mm in size.
- (2) Full grounding on rear side.
- (3) Solder coating over patterns.
- (4) o and O indicate through holes.

PACKAGE DIMENSIONS

30-pin plastic TSSOP (225 mil) (Unit: mm)

CAUTIONS ON USE

- 1. Observe precautions for handling because this IC is an electrostatic sensitive device.
- 2. Form as wide a ground pattern as possible to minimize its impedance.
- 3. Keep the track length of the ground pins as short as possible (to prevent malfunction).
- 4. Connect a bypass capacitor to the Vcc pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions.

For soldering methods and conditions other than the recommended conditions, consult an NEC sales representative.

μPC8139GR-7JH

Soldering Method	Soldering Conditions	Symbol	
Infrared reflow	Package peak temperature: 235°C. Duration: 30 sec. max. (210°C or above) Number of times: 2, Exposure limit: None	IR35-00-2	
VPS	Package peak temperature: 215°C. Duration: 40 sec. max. (200°C or above) Number of times: 2, Exposure limit: None	VP15-00-2	
Wave soldering	Soldering bath temperature : 260°C max. Duration: 10 sec. max. Number of times: 1, Exposure limit: None	WS60-00-1	
Partial heating method	Partial heating method Pin temperature: 300°C max. Duration: 3 sec. max. (per side of device) Exposure limit: None Note		

Note Storage period (days) after opening the dry pack. Storage conditions: 25°C and 65% RH or less (This product is not dry packed.)

Caution Do not use different soldering methods together (except for pin partial heating.)

For details of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed

for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.