

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC8178TB$

SILICON MMIC LOW CURRENT AMPLIFIER FOR MOBILE COMMUNICATIONS

DESCRIPTION

The μ PC8178TB is a silicon monolithic integrated circuit designed as amplifier for mobile communications. This IC can realize low current consumption with external chip inductor which can not be realized on internal 50 Ω wideband matched IC. This low current amplifier operates on 3.0 V.

This IC is manufactured using NEC's 30 GHz f_{max} UHS0 (<u>U</u>ltra <u>High Speed Process</u>) silicon bipolar process. This process uses direct silicon nitride passivation film and gold electrodes. These materials can protect the chip surface from pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

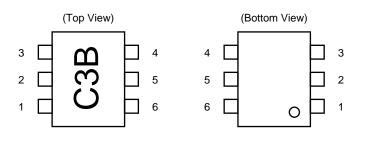
FEATURES

•	Low current consumption	:	Icc = 1.9 mA TYP. @ Vcc = 3.0 V
•	Supply voltage	:	Vcc = 2.4 to 3.3 V
٠	Excellent isolation	:	ISL = 39 dB TYP. @ f = 1.0 GHz
			ISL = 40 dB TYP. @ f = 1.9 GHz
			ISL = 38 dB TYP. @ f = 2.4 GHz
٠	Power gain	:	G _P = 11.0 dB TYP. @ f = 1.0 GHz
			G _P = 11.5 dB TYP. @ f = 1.9 GHz
			GP = 11.5 dB TYP. @ f = 2.4 GHz
٠	Gain 1 dB compression output power	:	Po (1 dB) = -4.0 dBm TYP. @ f = 1.0 GHz
			Po (1 dB) = -7.0 dBm TYP. @ f = 1.9 GHz
			Po (1 dB) = -7.5 dBm TYP. @ f = 2.4 GHz
٠	Operating frequency	:	0.1 to 2.4 GHz (Output port LC matching)
٠	High-density surface mounting	:	6-pin super minimold package ($2.0 \times 1.25 \times 0.9$ mm)
٠	Low weight	:	7 mg (Standard value)

APPLICATION

• Buffer amplifiers on 0.1 to 2.4 GHz mobile communications system

Caution Electro-static sensitive devices


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

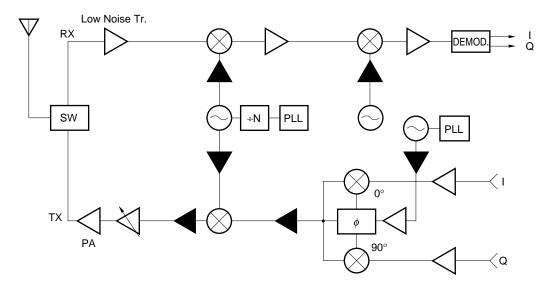
ORDERING INFORMATION

Part Number	Package	Marking	Supplying Form
μΡC8178TB-E3	6-pin super minimold	C3B	Embossed tape 8 mm wide. 1, 2, 3 pins face the perforation side of the tape. Qty 3 kpcs/reel.

Remark To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: μ PC8178TB)

PIN CONNECTIONS

Pin No.	Pin Name
1	INPUT
2	GND
3	GND
4	OUTPUT
5	GND
6	Vcc


Parameter		1.0 GHz output port matching frequency		1.66 GHz output port matching frequency		1.9 GHz output port matching frequency			2.4 GHz output port matching frequency			Marking		
Part No.	lcc (mA)	G⊦ (dB)	ISL (dB)	Po(1dB) (dBm)	G⊦ (dB)	ISL (dB)	Po(1dB) (dBm)	G⊦ (dB)	ISL (dB)	Po(1dB) (dBm)	G⊦ (dB)	ISL (dB)	Po(1dB) (dBm)	
μPC8178TB	1.9	11	39	-4.0	_	-	-	11.5	40	-7.0	11.5	38	-7.5	C3B
μPC8179TB	4.0	13.5	44	+3.0	-	_	_	15.5	42	+1.5	15.5	41	+1.0	C3C
μPC8128TB	2.8	12.5	39	-4.0	13	39	-4.0	13	37	-4.0	-	I	-	C2P
μPC8151TB	4.2	12.5	38	+2.5	15	36	+1.5	15	34	+0.5	١	١	-	C2U
μPC8152TB	5.6	23	40	-4.5	19.5	38	-8.5	17.5	35	-8.5	_	-	-	C2V

PRODUCT LINE-UP (TA = +25°C, VCC = Vout = 3.0 V, ZS = ZL = 50 Ω)

Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.

SYSTEM APPLICATION EXAMPLE

Location examples in digital cellular

These ICs can be added to your system around \blacktriangle parts, when you need more isolation or gain. The application herein, however, shows only examples, therefore the application can depend on your kit evaluation.

PIN EXPLANATION

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V) ^{Note}	Function and Applications	Internal Equivalent Circuit
1	INPUT	_	0.91	Signal input pin. A internal matching circuit, configured with resisters, enables 50 Ω connection over a wide band. This pin must be coupled to signal source with capacitor for DC cut.	
2 3 5	GND	0	_	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be con- nected together with wide ground pattern to decrease impedance defference.	
4	OUTPUT	voltage as same as Vcc through external inductor	_	Signal output pin. This pin is de- signed as collector output. Due to the high impedance output, this pin should be externally equipped with LC matching circuit to next stage. For L, a size 1005 chip inductor can be chosen.	
6	Vcc	2.4 to 3.3	_	Power supply pin. This pin should be externally equipped with bypass capacitor to minimize its impedance.	

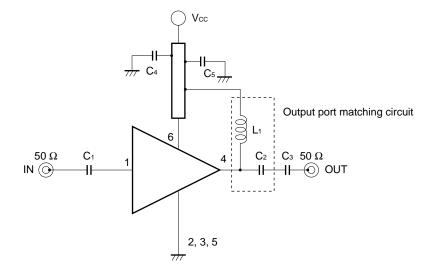
Note Pin voltage is measured at Vcc = 3.0 V.

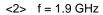
ABSOLUTE MAXIMUM RATINGS

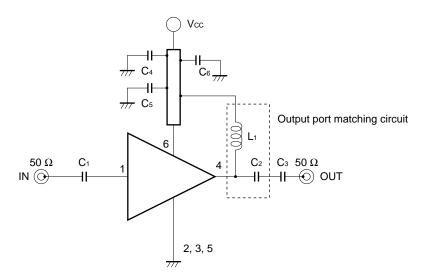
Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	Vcc	T _A = +25°C, Pin 4, Pin 6	3.6	V
Circuit Current	lcc	T _A = +25°C	15	mA
Power Dissipation	PD	Mounted on double sided copper clad $50 \times 50 \times 1.6$ mm epoxy glass PWB (T _A = +85°C)	270	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		–55 to +150	°C
Input Power	Pin	$T_A = +25^{\circ}C$	+5	dBm

RECOMMENDED OPERATING CONDITIONS

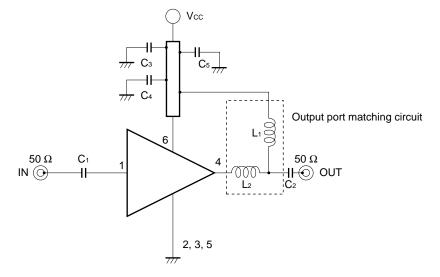
Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Remarks
Supply Voltage	Vcc	2.4	3.0	3.3	V	The same voltage should be applied to pin 4 and pin 6.
Operating Ambient Temperature	TA	-40	+25	+85	°C	

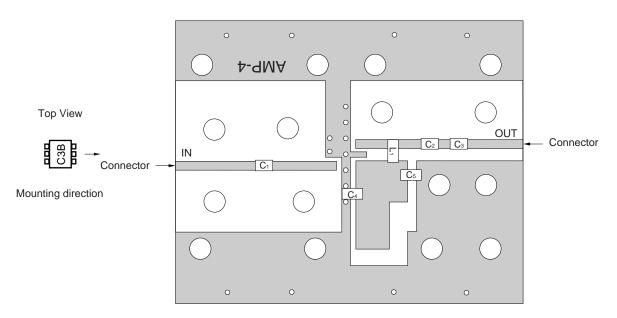

* ELECTRICAL CHARACTERISTICS


(Unless otherwise specified, $T_A = +25^{\circ}C$, $V_{CC} = V_{out} = 3.0 V$, $Z_S = Z_L = 50 \Omega$, at LC matched frequency)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	lcc	No signal	1.4	1.9	2.4	mA
Power Gain	G₽	f = 1.0 GHz, P _{in} = -30 dBm f = 1.9 GHz, P _{in} = -30 dBm f = 2.4 GHz, P _{in} = -30 dBm	9.0 9.0 9.0	11.0 11.5 11.5	13.0 13.5 13.5	dB
Isolation	ISL	$ f = 1.0 \text{ GHz}, P_{in} = -30 \text{ dBm} $ $ f = 1.9 \text{ GHz}, P_{in} = -30 \text{ dBm} $ $ f = 2.4 \text{ GHz}, P_{in} = -30 \text{ dBm} $	34 35 33	39 40 38		dB
Gain 1 dB Compression Output Power	Po(1dB)	f = 1.0 GHz f = 1.9 GHz f = 2.4 GHz	-8.0 -11.0 -11.5	-4.0 -7.0 -7.5		dBm
Noise Figure	NF	f = 1.0 GHz f = 1.9 GHz f = 2.4 GHz	- - -	5.5 5.5 5.5	7.0 7.0 7.0	dB
Input Return Loss	RLin	f = 1.0 GHz, P _{in} = -30 dBm f = 1.9 GHz, P _{in} = -30 dBm f = 2.4 GHz, P _{in} = -30 dBm	4 5 6.5	7 8 9.5	-	dB

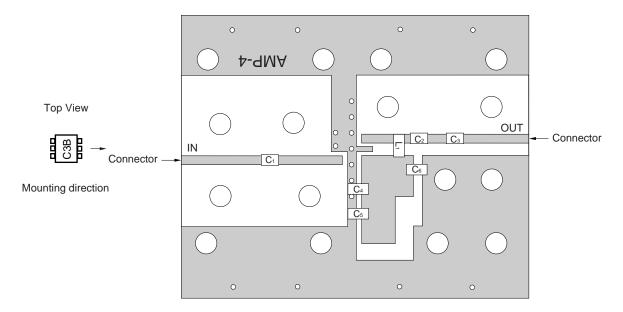
TEST CIRCUITS


★ <1> f = 1.0 GHz



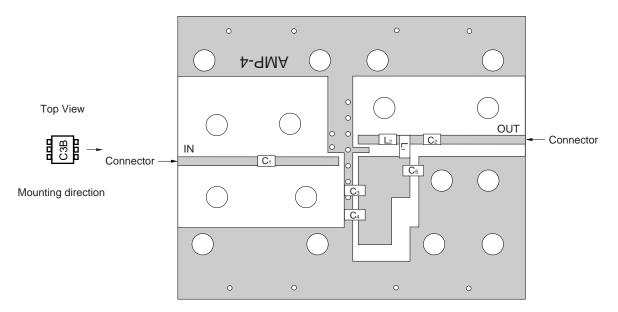
<3> f = 2.4 GHz

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD


<1> f = 1.0 GHz

COMPONENT LIST

	1.0 GHz Output Port Matching
C1, C3, C5	1 000 pF
C2	0.75 pF
C ₄	10 pF
L1	12 nH

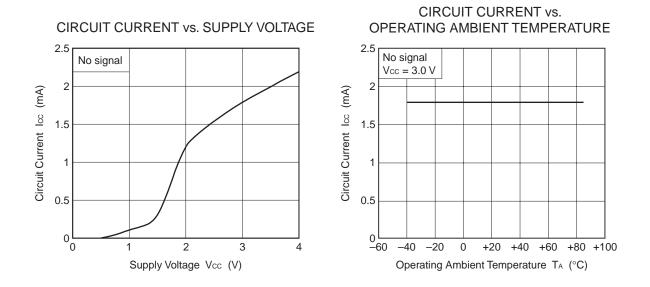

<2> f = 1.9 GHz

COMPONENT LIST

	1.9 GHz Output Port Matching
C1, C3, C5, C6	1 000 pF
C2	0.5 pF
C4	10 pF
L1	3.9 nH

<3> f = 2.4 GHz

COMPONENT LIST

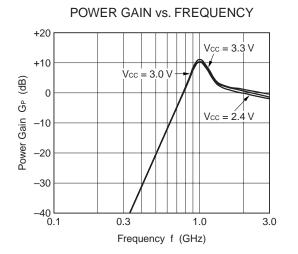

	2.4 GHz Output Port Matching
C1, C2, C4, C5	1 000 pF
C ₃	10 pF
L1	1.8 nH
L2	2.7 nH

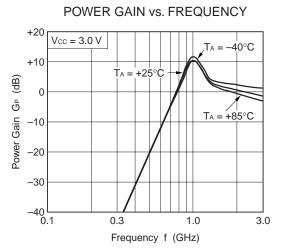
NOTES

- (*1) $42 \times 35 \times 0.4$ mm double sided copper clad polyimide board
- (*2) Solder plated on pattern
- (*3) Back side: GND pattern
- (*4) : Through holes

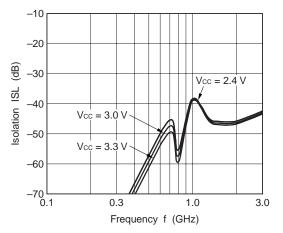
***** TYPICAL CHARACTERISTICS (Unless otherwise specified, T_A = +25°C)

NEC

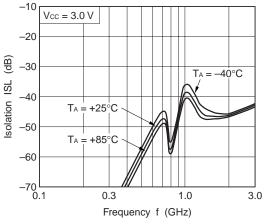

1.0 GHz OUTPUT PORT MATCHING

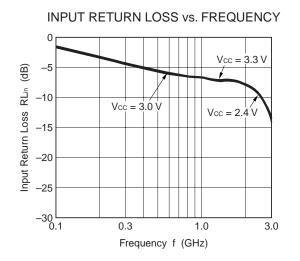

S-PARAMETERS (monitored at connector on board)

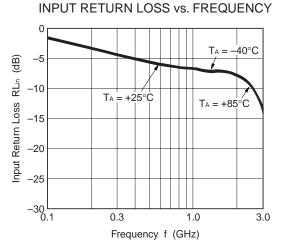
 T_{A} = +25°C , Vcc = Vout = 3.0 V



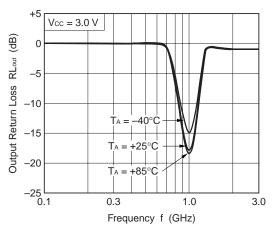
1.0 GHz OUTPUT PORT MATCHING

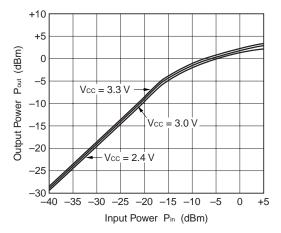




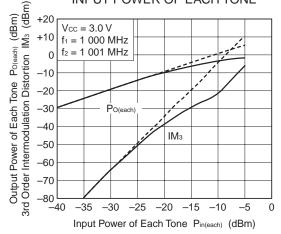

ISOLATION vs. FREQUENCY

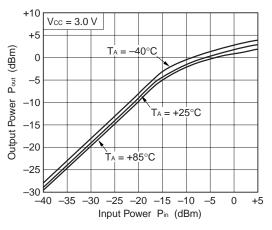
ISOLATION vs. FREQUENCY

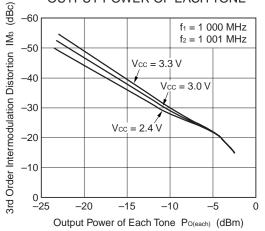



OUTPUT RETURN LOSS vs. FREQUENCY +5 (dB) 0 RLout -5 Output Return Loss -10 Vcc = 2.4 V -15 Vcc = 3.0 V -20Vcc = 3.3 V _25└ 0.1 0.3 1.0 3.0 Frequency f (GHz)

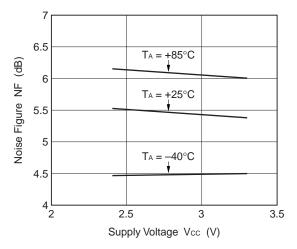
1.0 GHz OUTPUT PORT MATCHING


OUTPUT RETURN LOSS vs. FREQUENCY


OUTPUT POWER vs. INPUT POWER

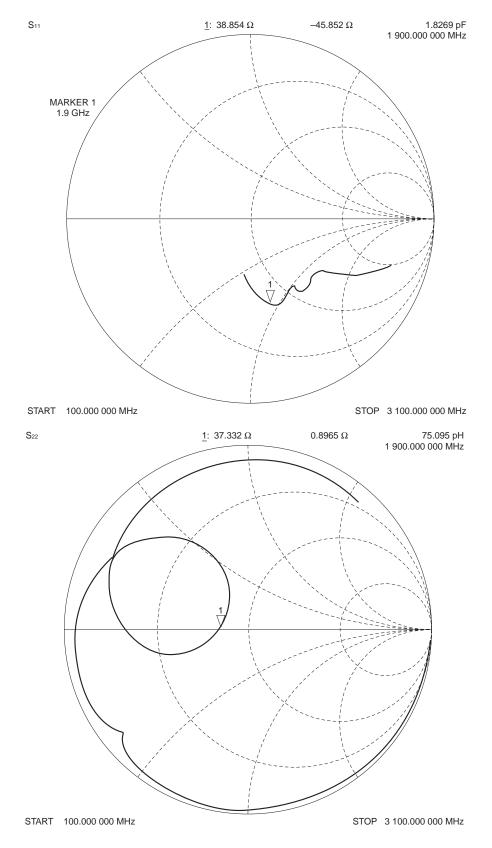

OUTPUT POWER OF EACH TONE, IM₃ vs. INPUT POWER OF EACH TONE

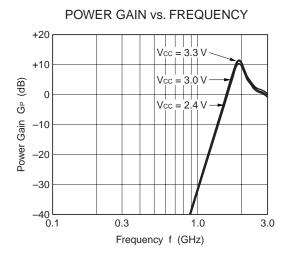
OUTPUT POWER vs. INPUT POWER

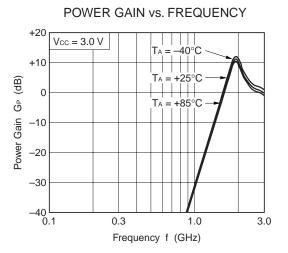


³RD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE

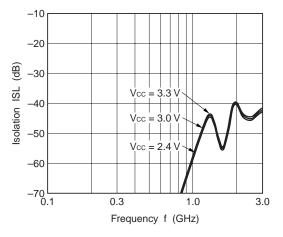
1.0 GHz OUTPUT PORT MATCHING


NOISE FIGURE vs. SUPPLY VOLTAGE

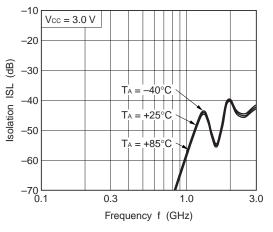

1.9 GHz OUTPUT PORT MATCHING

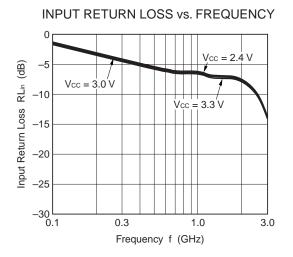

S-PARAMETERS (monitored at connector on board)

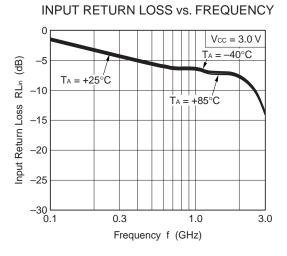
 T_{A} = +25°C , Vcc = Vout = 3.0 V



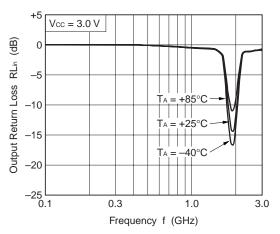
1.9 GHz OUTPUT PORT MATCHING

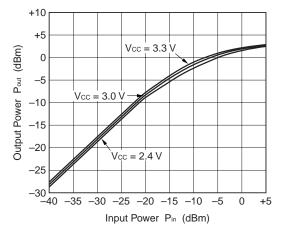




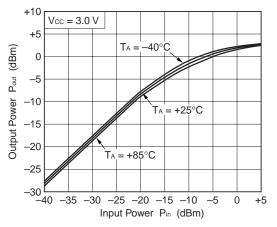

ISOLATION vs. FREQUENCY

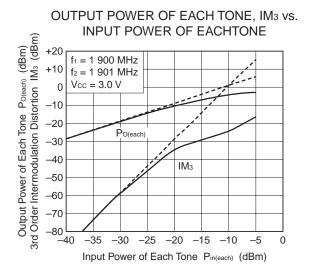
ISOLATION vs. FREQUENCY



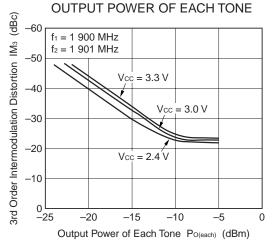

OUTPUT RETURN LOSS vs. FREQUENCY +5 (dB) 0 RLout -5 **Output Return Loss** Vcc = 2.4 V-10 Vcc = 3.0 V +++-15 Vcc = 3.3 V -20 –25 ∟ 0.1 0.3 3.0 1.0 Frequency f (GHz)

1.9 GHz OUTPUT PORT MATCHING

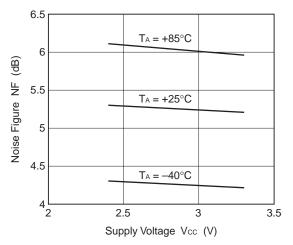

OUTPUT RETURN LOSS vs. FREQUENCY



OUTPUT POWER vs. INPUT POWER



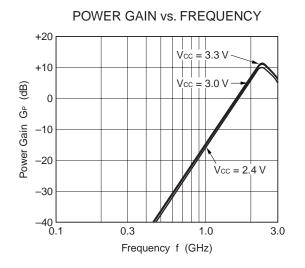
OUTPUT POWER vs. INPUT POWER

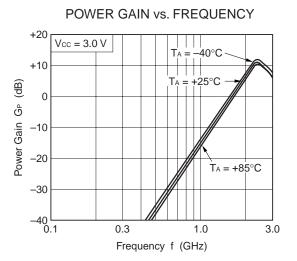


3RD ORDER INTERMODULATION DISTORTION vs.

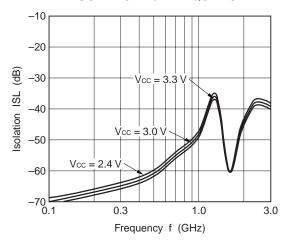
1.9 GHz OUTPUT PORT MATCHING

NOISE FIGURE vs. SUPPLY VOLTAGE

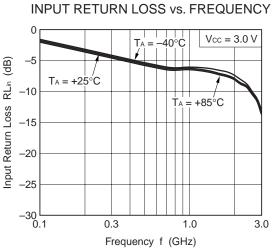

2.4 GHz OUTPUT PORT MATCHING


S-PARAMETERS (monitored at connector on board)

 T_{A} = +25°C , Vcc = Vout = 3.0 V



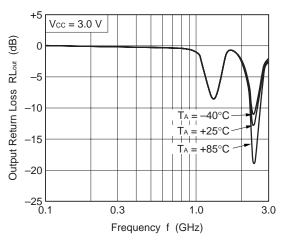
2.4 GHz OUTPUT PORT MATCHING

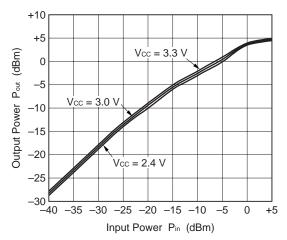

ISOLATION vs. FREQUENCY

-10 Vcc = 3.0 V -20 Isolation ISL (dB) -30 40°C TA = -40 $T_A = +25^{\circ}C$ -50 T_A = +85°C -60 -70 **-**0.1 3.0 0.3 1.0 Frequency f (GHz)

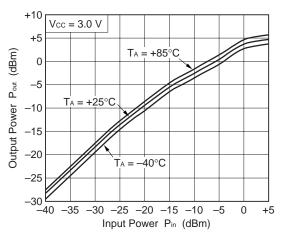
ISOLATION vs. FREQUENCY

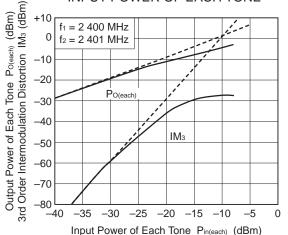
INPUT RETURN LOSS vs. FREQUENCY 0 | | | | | Vcc = 2.4 V -5 Input Return Loss RLin (dB) Vcc = 3.0 V -10 Vcc = 3.3 V -15 -20 -25 -30 └ 0.1 0.3 1.0 3.0 Frequency f (GHz)

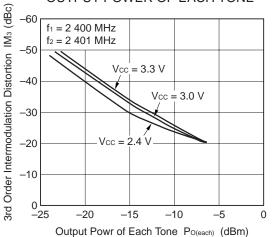



OUTPUT RETURN LOSS vs. FREQUENCY +5 (dB) 0 RLout -5 **Output Return Loss** -10 Vcc = 2.4 V Vcc = 3.0 V -15 $V_{CC} = 3.3 V$ -20 –25 ⊾ 0.1 0.3 3.0 1.0 Frequency f (GHz)

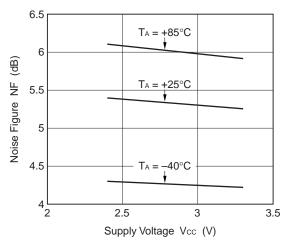
2.4 GHz OUTPUT PORT MATCHING


OUTPUT RETURN LOSS vs. FREQUENCY


OUTPUT POWER vs. INPUT POWER

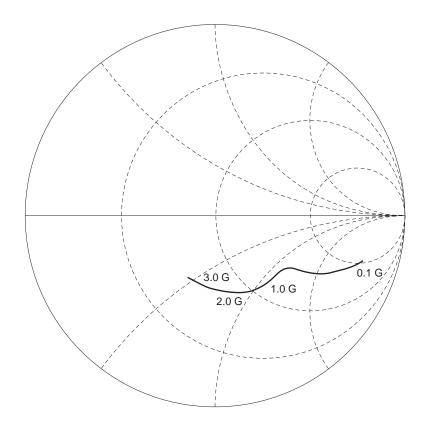

OUTPUT POWER vs. INPUT POWER

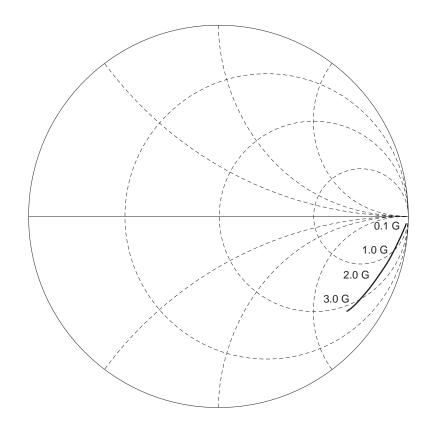
OUTPUT POWER OF EACH TONE, IM₃ vs. INPUT POWER OF EACH TONE



3RD ORDER INTERMODULATION DISTORTION vs. OUTPUT POWER OF EACH TONE

2.4 GHz OUTPUT PORT MATCHING

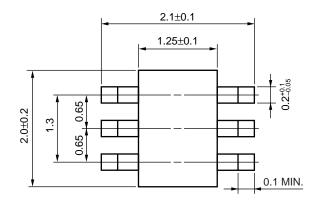

NOISE FIGURE vs. SUPPLY VOLTAGE

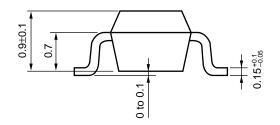

Remark The graphs indicate nominal characteristics.

S-PARAMETERS (Vcc = Vout = 3.0 V)

S11-FREQUENCY

S22-FREQUENCY


TYPICAL S-PARAMETER VALUES (TA = +25°C)


$Vcc = V_{out} = 3.0 V$, Icc = 1.9 mA

FREQUENCY	S	11	Ş	S 21	S	12	S	12
MHz	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.	MAG.	ANG.
100.0000	0.821	-16.9	1.060	180.0	0.002	83.1	0.996	-1.9
200.0000	0.692	-26.0	1.042	-177.2	0.004	57.2	0.994	-3.9
300.0000	0.598	-30.2	1.085	-174.3	0.004	56.5	0.985	-5.4
400.0000	0.540	-31.6	1.164	-172.7	0.004	40.1	0.973	-6.9
500.0000	0.501	-33.1	1.259	-172.3	0.006	36.8	0.958	-8.2
600.0000	0.484	-34.0	1.365	-173.8	0.004	27.3	0.952	-9.7
700.0000	0.477	-35.5	1.516	-176.1	0.005	41.3	0.948	-10.8
800.000	0.474	-37.4	1.601	-179.4	0.006	47.2	0.946	-11.9
900.0000	0.469	-40.4	1.700	177.2	0.006	41.9	0.942	-13.0
1000.0000	0.466	-42.8	1.791	172.1	0.006	39.8	0.927	-14.4
1100.0000	0.453	-45.2	1.867	167.6	0.006	30.9	0.916	-15.5
1200.0000	0.447	-48.2	1.929	163.2	0.005	27.1	0.915	-16.8
1300.0000	0.442	-51.3	2.030	157.3	0.005	37.0	0.913	-17.8
1400.0000	0.439	-55.1	2.067	152.2	0.006	40.6	0.907	-19.0
1500.0000	0.439	-59.0	2.109	146.4	0.004	52.5	0.902	-19.8
1600.0000	0.439	-62.6	2.118	142.5	0.006	32.5	0.888	-21.1
1700.0000	0.433	-66.0	2.089	137.2	0.005	44.7	0.880	-22.0
1800.0000	0.427	-69.8	2.082	132.7	0.006	52.4	0.882	-23.0
1900.0000	0.416	-73.1	2.034	127.9	0.005	48.6	0.884	-24.1
2000.0000	0.405	-77.4	2.025	124.0	0.006	42.4	0.880	-25.0
2100.0000	0.399	-82.2	1.967	119.6	0.005	57.6	0.872	-26.1
2200.0000	0.395	-86.5	1.992	116.7	0.004	62.3	0.864	-27.2
2300.0000	0.398	-89.4	1.999	113.6	0.005	70.7	0.863	-28.1
2400.0000	0.396	-92.5	2.019	110.7	0.003	105.5	0.862	-29.2
2500.0000	0.394	-95.2	1.963	107.2	0.004	88.3	0.860	-30.4
2600.0000	0.382	-97.5	2.013	103.6	0.005	110.9	0.857	-31.2
2700.0000	0.368	-101.1	1.948	101.4	0.005	107.6	0.849	-32.1
2800.0000	0.360	-104.8	1.934	96.2	0.007	124.4	0.846	-33.2
2900.0000	0.359	-108.7	1.986	94.5	0.005	100.5	0.842	-34.7
3000.0000	0.357	-111.2	1.951	89.5	0.008	128.9	0.844	-35.4
3100.0000	0.355	-113.7	2.049	85.8	0.009	113.3	0.846	-36.7

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground pins must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to Vcc line.
- (4) The inductor (L) should be attached between output and Vcc pins. The L and series capacitor (C) values should be adjusted for applied frequency to match impedance to next stage.
- (5) The DC capacitor must be attached to input pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared Reflow	Package peak temperature: 235°C or below Time: 30 seconds or less (at 210°C) Count: 3, Exposure limit: None ^{Note}	IR35-00-3
VPS	Package peak temperature: 215°C or below Time: 40 seconds or less (at 200°C) Count: 3, Exposure limit: None ^{Note}	VP15-00-3
Wave Soldering	Soldering bath temperature: 260°C or below Time: 10 seconds or less Count: 1, Exposure limit: None ^{Note}	WS60-00-1
Partial Heating	Pin temperature: 300°C Time: 3 seconds or less (per side of device) Exposure limit: None ^{Note}	_

Note After opening the dry pack, keep it in a place below 25°C and 65% RH for the allowable storage period.

Caution Do not use different soldering methods together (except for partial heating).

For details of recommended soldering conditions for surface mounting, refer to information document **SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E)**.

[MEMO]

- The information in this document is current as of November, 2000. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative
 purposes in semiconductor product operation and application examples. The incorporation of these
 circuits, software and information in the design of customer's equipment shall be done under the full
 responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
 parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products
 developed based on a customer-designated "quality assurance program" for a specific application. The
 recommended applications of a semiconductor product depend on its quality grade, as indicated below.
 Customers must check the quality grade of each semiconductor product before using it in a particular
 application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).