

MOS INTEGRATED CIRCUIT μ PD16717

384-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

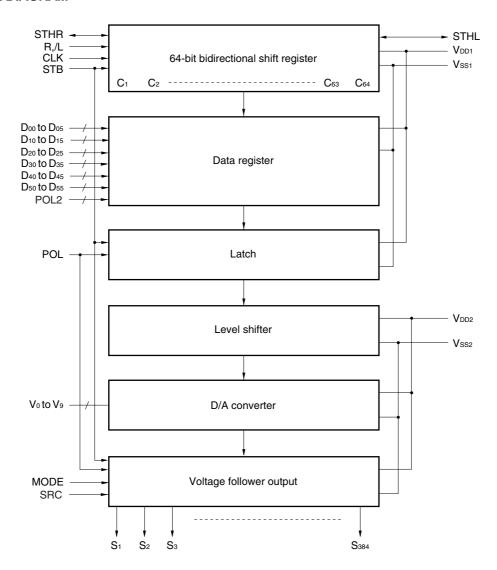
DESCRIPTION

The μ PD16717 is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as large as Vss2 + 0.2 V to Vdd2 - 0.2 V, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 55 MHz when driving at 2.5 V, this driver is applicable to XGA-standard TFT-LCD panels and SXGA TFT-LCD panels.

FEATURES

- CMOS level input (2.5 to 3.6 V)
- 384 outputs
- Input of 6 bits (gray-scale data) by 6 dots
- Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter (R-DAC)
- Logic power supply voltage (VDD1): 2.5 to 3.6 V
- Driver power supply voltage (V_{DD2}): 8.5 V \pm 0.5 V
- High-speed data transfer: fclk = 55 MHz (internal data transfer speed when operating at V_{DD1} = 2.5 V)
- Output dynamic range: Vss2 + 0.2 V to VDD2 0.2 V
- Apply for dot-line inversion, n-line inversion and column line inversion
- Output voltage polarity inversion function (POL)
- Input data inversion function (POL2)
- Through rate control inversion function (SRC)
- ★ Output reset control inversion function (MODE)
 - Slim chip

ORDERING INFORMATION

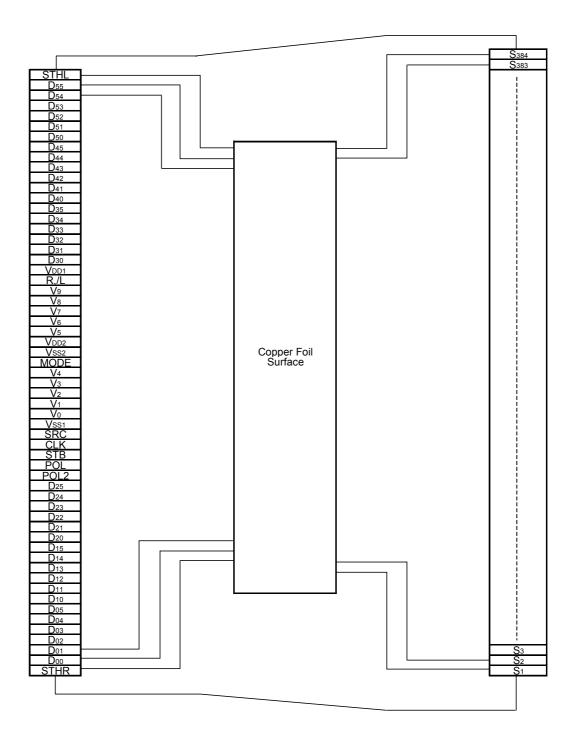

Part Number	Package		
μ PD16717N-xxx	TCP (TAB package)		

Remark The TCP's external shape is customized. To order the required shape, so please contact one of our sales representatives.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.


Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

★ 1. BLOCK DIAGRAM



Remark /xxx indicates active low signal.

★ 2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

3. PIN CONFIGURATION (µPD16717) (Copper Foil Surface, Face-up)

Remark This figure does not specify the TCP package.

★ 4. PIN FUNCTIONS

(1/2)

Pin Symbol	Pin Name	I/O	Description
S ₁ to S ₃₈₄	Driver	Output	The D/A converted 64-gray-scale analog voltage is output.
Doo to Dos	Display data	Input	The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6
D10 to D15			dots (2 pixels).
D ₂₀ to D ₂₅			Dxo: LSB, Dx5: MSB
D ₃₀ to D ₃₅			
D40 to D45			
D50 to D55			
R,/L	Shift direction control	Input	These refer to the shift direction control input pins when driver ICs are connected in cascade. The shift directions of the shift registers are as follows. R,/L = H (right shift): STHR (input), $S_1 \rightarrow S_{384}$, STHL (output) R,/L = L (left shift): STHL (input), $S_{384} \rightarrow S_1$, STHR (output)
STHR	Right shift start pulse	I/O	These refer to the start pulse I/O pins when driver ICs are connected in cascade. Fetching of display data starts when H is read at the rising edge of CLK. R,/L = H (right shift): STHR input, STHL output
STHL	Left shift start pulse	I/O	R,/L = L (left shift): STHL input, STHR output A high level should be input as the pulse of one cycle of the clock signal. If the start pulse input is more than 2CLK, the first 1CLK of the high-level input is valid.
CLK	Shift clock	Input	Refers to the shift register's shift clock input. The display data is incorporated into the data register at the rising edge. At the rising edge of the 64th after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. If 66th clock pulses are input after input of the start pulse, input of display data is halted automatically. The contents of the shift register are cleared at the STB's rising edge. This pin should not stop during blanking period.
STB	Latch	Input	The contents of the data register are transferred to the latch circuit at the rising edge. Output timing of gray scale voltage is changed by setting MODE. MODE = H or open: STB at the falling edge, the gray scale voltage is supplied to the driver. MODE = L: After set to STB = H, the gray scale voltage is supplied by the rising edge behind 3 clocks. It is necessary to ensure input of one pulse per horizontal period.
POL	Polarity	Input	POL = L: The S_{2n-1} output uses V_0 to V_4 as the reference supply. The S_{2n} output uses V_5 to V_9 as the reference supply. POL = H: The S_{2n-1} output uses V_5 to V_9 as the reference supply. The S_{2n} output uses V_0 to V_4 as the reference supply. S_{2n-1} indicates the odd output: and S_{2n} indicates the even output. Input of the POL signal is allowed the setup time ($t_{POL-STB}$) with respect to STB's rising edge.
POL2	Data inversion	Input	Data inversion can invert when display data is loaded. POL2 = H: Data inversion inverts display data inside IC. POL2 = L: Data inversion does not invert input data. When in STB = H, it becomes test mode if POL2 is changed, throughout STB = H period should not carry out the change of POL2.

(2/2)

Pin Symbol	Pin Name	I/O	Description
MODE	Output reset control	Input	MODE = H or open: Output reset. STB at the falling edge, the gray scale voltage is
			supplied to the driver.
			MODE = L: Non-output reset. After set to STB = H, the gray scale voltage is supplied
			by the rising edge behind 3 clocks.
			This pin is pulled up to the VDD2 power supply inside the IC.
SRC	High driving time	Input	This pin is set up to high drive time by the multiple of STB width.
	control		SRC = H or open: High drive time is twice the STB width.
			SRC = L: High drive time is three times the STB width.
			Refer to 9. SRC PIN AND HIGH DRIVING TIME
			This pin is pulled up to the V _{DD1} power supply inside the IC.
Vo to V9	γ -corrected power	_	Input the γ -corrected power supplies from outside by using operational amplifier.
	supplies		Make sure to maintain the following relationships. During the gray scale voltage output,
			be sure to keep the gray scale level power supply at a constant level.
			$V_{DD2} - 0.2 \text{ V} \ge V_0 > V_1 > V_2 > V_3 > V_4 \ge 0.5 \text{ V}_{DD2}$
			$0.5 \text{ V}_{DD2} \ge V_5 > V_6 > V_7 > V_8 > V_9 \ge V_{SS2} + 0.2 \text{ V}$
V _{DD1}	Logic power supply	_	2.5 to 3.6 V
V _{DD2}	Driver power supply	_	8.5 V ± 0.5 V
Vss1	Logic ground	_	Grounding
Vss2	Driver ground	_	Grounding

- Cautions 1. The power start sequence must be V_{DD1}, logic input, and V_{DD2} & V₀ to V₉ in that order.

 Reverse this sequence to shut down (Simultaneous power application to V_{DD2} and V₀ to V₉ is possible.).
 - 2. To stabilize the supply voltage, please be sure to insert a 0.1 μ F bypass capacitor between V_{DD1}-V_{SS1} and V_{DD2}-V_{SS2}. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 μ F is also recommended between the γ -corrected power supply terminals (V₀, V₁, V₂,...., V₉) and V_{SS}.

5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

The μ PD16717 incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode voltage. The D/A converter consists of ladder resistors and switches.

The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ -compensated voltages to V₀' to V₆₃' and V₀" to V₆₃" is almost equivalent. For the 2 sets of five γ -compensated power supplies, V₀ to V₄ and V₅ to V₉, respectively, input gray scale voltages of the same polarity with respect to the common voltage

Figure 5–1 shows the relationship between the driving voltages such as liquid-crystal driving voltages V_{DD2} and V_{SS2} , common electrode potential V_{COM} , and γ -corrected voltages V_0 to V_9 and the input data. Be sure to maintain the voltage relationships of

$$\begin{split} V_{DD2} - 0.2 \ V \ge V_0 > V_1 > V_2 > V_3 > V_4 \ge 0.5 \ V_{DD2} \\ 0.5 \ V_{DD2} \ge V_5 > V_6 > V_7 > V_8 > V_9 \ge V_{SS2} + 0.2 \ V_9 > V_9 > 0.2 \ V_9 > 0.2 \$$

Figures 5–2 and 5–3 indicate the relationship between the input data and output voltage and the resistance values of the resistor string.

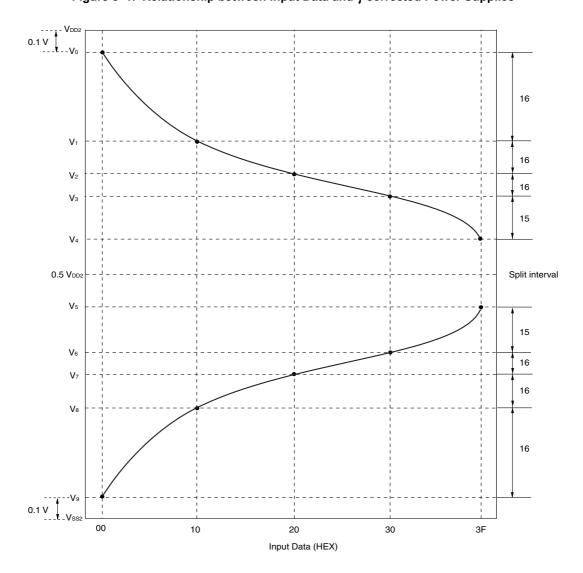


Figure 5–1. Relationship between Input Data and γ -corrected Power Supplies

Figure 5–2. γ -corrected Voltages and Ladder Resistors Ratio

rn	Ratio
r0	6.2
r1	5.8
r2	5.4
r3	5.1
r4	4.7
r5	4.3
r6	4.3
r7	3.9
r8	3.9
r9	3.1
r10	3.1
r11	2.7
r12	2.7
r13	2.7
r14	2.3
r15	2.3
r16	2.0
r17	1.8
r18	1.8
r19	1.7
r20	1.6
r21	1.5
r22	1.5
r23	1.4
r24	1.3
r25	1.3
r26	1.2
r27	1.2
r28	1.1
r29	1.1
r30	1.0
r31	1.0
r32	1.0
r33	1.0
r34	1.0
r35	1.0
r36	1.0
r37	1.0
r38	1.0
r39	1.0
r40	1.0
r41	1.0
r42	1.0
r43	1.0
r44	1.0
r45	1.0
r46	1.0
r47	1.0
r48	1.1
r49	1.1
r50	1.1
r51	1.1
r52	1.1
r53	1.6
r54	1.6
r55	1.6
r56	1.6
r57	1.6
r58	2.1
r59	2.7
r60	3.4
r61	5.2
r62	11.2

Caution There is no connection between V_4 and V_5 terminal in the chip.

Figure 5–3. Relationship between Input Data and Output Voltage (POL2 = L) $(\text{Output Voltage 1}) \ V_{\text{DD2}} - 0.2 \ \text{V} \geq \text{V}_5 > \text{V}_6 > \text{V}_7 > \text{V}_8 > \text{V}_9 \geq 0.5 \ \text{V}_{\text{DD2}}$ $(\text{Output Voltage 2}) \ 0.5 \ \text{V}_{\text{DD2}} \geq \text{V}_5 > \text{V}_6 > \text{V}_7 > \text{V}_8 > \text{V}_9 \geq \text{V}_{\text{SS2}} + 0.2 \ \text{V}$

Input Data		Output V	oltage1			Output V	oltage2	
00H	V ₀ .	V ₀	oltage i		V _{0"}	V ₉	oltagez	
01H	V _{1'}	V ₁ +(V ₀ -V ₁)×	56.4 /	62.6	V _{1"}	V ₉ +(V ₈ -V ₉)×	6.2 /	62.6
02H	V _{2'}	$V_1 + (V_0 - V_1) \times$	50.6 /	62.6	V _{2"}	$V_9 + (V_8 - V_9) \times$	12.1 /	62.6
03H	V _{3'}	V ₁ +(V ₀ -V ₁)×	45.1 /	62.6	V _{3"}	V ₉ +(V ₈ -V ₉)×	17.5 /	62.6
04H	V _{4'}	$V_1 + (V_0 - V_1) \times$	40.1 /	62.6	V _{4"}	$V_9 + (V_8 - V_9) \times$	22.6 /	62.6
05H	V _{5'}	$V_1 + (V_0 - V_1) \times$	35.4 /	62.6	V _{5"}	$V_9 + (V_8 - V_9) \times$	27.2 /	62.6
06H	V _{6'}	$V_1 + (V_0 - V_1) \times$	31.1 /	62.6	V _{6"}	$V_9 + (V_8 - V_9) \times$	31.5 /	62.6
07H	V _{7'}	$V_1 + (V_0 - V_1) \times$	26.8 /	62.6	V _{5"}	$V_9 + (V_8 - V_9) \times$	35.8 /	62.6
08H	V _{7'}	$V_1 + (V_0 - V_1) \times V_1 + (V_0 - V_1) \times V_2 + (V_0 - V_1) \times V_1 + (V_0 - V_1) \times V_2 $	22.9 /	62.6	V _{7"}	$V_9 + (V_8 - V_9) \times$	39.7 /	62.6
09H	V _{8'}	$V_1 + (V_0 - V_1) \times V_1 + (V_0 - V_1) \times V_2 + (V_0 - V_1) \times V_1 + (V_0 - V_1) \times V_2 $	19.1 /	62.6	V _{8"}	$V_9 + (V_8 - V_9) \times$	43.6 /	62.6
0AH	V _{9'}	$V_1 + (V_0 - V_1) \times V_1 + (V_0 - V_1) \times V_2 + (V_0 - V_1) \times V_1 + (V_0 - V_1) \times V_2 $	15.9 /	62.6	V _{9"}	$V_9 + (V_8 - V_9) \times$	46.7 /	62.6
0BH			12.8 /	62.6			49.8 /	62.6
0CH	V _{11'}	$V_1 + (V_0 - V_1) \times V_1 + (V_0 - V_1) \times V_2 + (V_0 - V_1) \times V_1 + (V_0 - V_1) \times V_2 + (V_0 - V_1) \times V_3 + (V_0 - V_1) \times V_4 + (V_0 - V_1) \times V_2 + (V_0 - V_1) \times V_3 + (V_0 - V_1) \times V_4 + (V_0 - V_1) \times V_3 + (V_0 - V_1) \times V_4 + (V_0 - V_1) \times V_3 + (V_0 - V_1) \times V_4 + (V_0 - V_1) \times V_4 + (V_0 - V_1) \times V_5 $		62.6	V _{11"}	V ₉ +(V ₈ -V ₉)×		
	V _{12'}				V _{12"}	$V_9 + (V_8 - V_9) \times$	52.5 /	62.6
0DH	V _{13'}	$V_1 + (V_0 - V_1) \times V_1 + (V_1 - V_1) \times V_2 + (V_1 - V_2) \times V_3 + (V_1 - V_1) \times V_4 + (V_1 - V_1) \times V_4 + (V_1 - V_1) \times V_5 + (V_1 - V_1) \times V_6 $	7.4 /	62.6	V _{13"}	V ₉ +(V ₈ -V ₉)×	55.2 /	62.6
0EH	V _{14'}	V ₁ +(V ₀ -V ₁)×	4.7 /	62.6	V _{14"}	V ₉ +(V ₈ -V ₉)×	57.9 /	62.6
0FH	V _{15'}	$V_1 + (V_0 - V_1) \times$	2.3 /	62.6	V _{15"}	V ₉ +(V ₈ -V ₉)×	60.3 /	62.6
10H	V _{16'}	V ₁	00 7 /	00.0	V _{16"}	V ₈		00.0
11H	V _{17'}	$V_2+(V_1-V_2)\times$	20.7 /	22.6	V _{17"}	$V_8 + (V_7 - V_8) \times$	2.0 /	22.6
12H	V _{18'}	$V_2 + (V_1 - V_2) \times$	18.8 /	22.6	V _{18"}	$V_8 + (V_7 - V_8) \times$	3.8 /	22.6
13H	V _{19'}	$V_2 + (V_1 - V_2) \times$	17.0 /	22.6	V _{19"}	$V_8 + (V_7 - V_8) \times$	5.7 /	22.6
14H	V _{20'}	$V_2+(V_1-V_2)\times$	15.3 /	22.6	V _{20"}	$V_8 + (V_7 - V_8) \times$	7.4 /	22.6
15H	V _{21'}	$V_2 + (V_1 - V_2) \times$	13.7 /	22.6	V _{21"}	$V_8+(V_7-V_8)\times$	9.0 /	22.6
16H	V _{22'}	$V_2+(V_1-V_2)\times$	12.1 /	22.6	V _{22"}	$V_8 + (V_7 - V_8) \times$	10.5 /	22.6
17H	V _{23'}	$V_2 + (V_1 - V_2) \times$	10.7 /	22.6	V _{23"}	$V_8 + (V_7 - V_8) \times$	12.0 /	22.6
18H	V _{24'}	$V_2+(V_1-V_2)\times$	9.3 /	22.6	V _{24"}	$V_8 + (V_7 - V_8) \times$	13.4 /	22.6
19H	V _{25'}	$V_2+(V_1-V_2)\times$	7.9 /	22.6	V _{25"}	$V_8 + (V_7 - V_8) \times$	14.7 /	22.6
1AH	V _{26'}	$V_2 + (V_1 - V_2) \times$	6.7 /	22.6	V _{26"}	$V_8 + (V_7 - V_8) \times$	16.0 /	22.6
1BH	V _{27'}	$V_2+(V_1-V_2)\times$	5.4 /	22.6	V _{27"}	$V_8 + (V_7 - V_8) \times$	17.2 /	22.6
1CH	V _{28'}	$V_2 + (V_1 - V_2) \times$	4.2 /	22.6	V _{28"}	$V_8 + (V_7 - V_8) \times$	18.4 /	22.6
1DH	V _{29'}	$V_2 + (V_1 - V_2) \times$	3.1 /	22.6	V _{29"}	$V_8 + (V_7 - V_8) \times$	19.5 /	22.6
1EH	V _{30'}	$V_2+(V_1-V_2)\times$	2.0 /	22.6	V _{30"}	$V_8 + (V_7 - V_8) \times$	20.6 /	22.6
1FH	V _{31'}	$V_2 + (V_1 - V_2) \times$	1.0 /	22.6	V _{31"}	$V_8 + (V_7 - V_8) \times$	21.6 /	22.6
20H	V _{32'}	V_2			V _{32"}	V_7		
21H	V _{33'}	$V_3 + (V_2 - V_3) \times$	15.0 /	16.0	V _{33"}	$V_7 + (V_6 - V_7) \times$	1.0 /	16.0
22H	V _{34'}	$V_3 + (V_2 - V_3) \times$	14.0 /	16.0	V _{34"}	$V_7 + (V_6 - V_7) \times$	2.0 /	16.0
23H	V _{35'}	$V_3 + (V_2 - V_3) \times$	13.0 /	16.0	V _{35"}	$V_7 + (V_6 - V_7) \times$	3.0 /	16.0
24H	V _{36'}	$V_3 + (V_2 - V_3) \times$	12.0 /	16.0	V _{36"}	$V_7 + (V_6 - V_7) \times$	4.0 /	16.0
25H	V _{37'}	$V_3 + (V_2 - V_3) \times$	11.0 /	16.0	V _{37"}	$V_7 + (V_6 - V_7) \times$	5.0 /	16.0
26H	V _{38'}	$V_3 + (V_2 - V_3) \times$	10.0 /	16.0	V _{38"}	$V_7 + (V_6 - V_7) \times$	6.0 /	16.0
27H	V _{39'}	$V_3 + (V_2 - V_3) \times$	9.0 /	16.0	V _{39"}	$V_7+(V_6-V_7)\times$	7.0 /	16.0
28H	V _{40'}	V ₃ +(V ₂ -V ₃)×	8.0 /	16.0	V _{40"}	$V_7 + (V_6 - V_7) \times$	8.0 /	16.0
29H	V _{41'}	V ₃ +(V ₂ -V ₃)×	7.0 /	16.0	V _{41"}	$V_7 + (V_6 - V_7) \times$	9.0 /	16.0
2AH	V _{42'}	V ₃ +(V ₂ -V ₃)×	6.0 /	16.0	V _{42"}	$V_7 + (V_6 - V_7) \times$	10.0 /	16.0
2BH	V _{43'}	$V_3 + (V_2 - V_3) \times$	5.0 /	16.0	V _{43"}	$V_7 + (V_6 - V_7) \times$	11.0 /	16.0
2CH	V ₄₃ ·	V ₃ +(V ₂ -V ₃)×	4.0 /	16.0	V _{44"}	$V_7 + (V_6 - V_7) \times$	12.0 /	16.0
2DH	V ₄₄ .	V ₃ +(V ₂ -V ₃)×	3.0 /	16.0	V _{45"}	$V_7 + (V_6 - V_7) \times$	13.0 /	16.0
2EH	V _{46'}	$V_3 + (V_2 - V_3) \times$	2.0 /	16.0	V ₄₅ "	$V_7 + (V_6 - V_7) \times$	14.0 /	16.0
2FH	V _{46'}	$V_3 + (V_2 - V_3) \times$	1.0 /	16.0	V _{46"}	$V_7 + (V_6 - V_7) \times$	15.0 /	16.0
30H	V _{48'}	V ₃ (V ₂ V ₃)	1.0 /	. 5.0	V ₄₇ "	V ₆	10.0 /	. 5.0
31H	V _{48'}	$V_4 + (V_3 - V_4) \times$	36.7 /	37.8	V _{48"}	$V_6 + (V_5 - V_6) \times$	1.1 /	37.8
32H	V ₄₉ ,	$V_4 + (V_3 - V_4) \times$	35.7 /	37.8	V _{49"}	$V_6 + (V_5 - V_6) \times$	2.1 /	37.8
33H	V _{50'}	$V_4 + (V_3 - V_4) \times V_4 $	34.6 /	37.8	V _{50"}	$V_6 + (V_5 - V_6) \times V_6 $	3.2 /	37.8
34H		$V_4 + (V_3 - V_4) \times V_4 $	33.5 /	37.8		$V_6 + (V_5 - V_6) \times V_6 $	4.2 /	37.8
35H	V _{52'}		32.5 /	37.8	V _{52"}	$V_6 + (V_5 - V_6) \times V_6 $		37.8
		V ₄ +(V ₃ -V ₄)×						
36H	V _{54'}	V ₄ +(V ₃ -V ₄)×	30.9 / 29.3 /	37.8	V _{54"}	V ₆ +(V ₅ -V ₆)×	6.9 /	37.8 37.8
37H	V _{55'}	V ₄ +(V ₃ -V ₄)×		37.8	V _{55"}	$V_6 + (V_5 - V_6) \times$	8.5 /	
38H	V _{56'}	V ₄ +(V ₃ -V ₄)×	27.7 /	37.8	V _{56"}	$V_6 + (V_5 - V_6) \times$	10.1 /	37.8
39H	V _{57'}	V ₄ +(V ₃ -V ₄)×	26.1 /	37.8	V _{57"}	V ₆ +(V ₅ -V ₆)×	11.7 /	37.8
3AH	V _{58'}	V ₄ +(V ₃ -V ₄)×	24.5 /	37.8	V _{58"}	$V_6 + (V_5 - V_6) \times$	13.3 /	37.8
3BH	V _{59'}	$V_4 + (V_3 - V_4) \times$	22.4 /	37.8	V _{59"}	$V_6 + (V_5 - V_6) \times$	15.4 /	37.8
3CH	V _{60'}	V ₄ +(V ₃ -V ₄)×	19.7 /	37.8	V _{60"}	$V_6 + (V_5 - V_6) \times$	18.1 /	37.8
3DH	V _{61'}	$V_4 + (V_3 - V_4) \times$	16.4 /	37.8	V _{61"}	$V_6 + (V_5 - V_6) \times$	21.4 /	37.8
3EH	V _{62'}	$V_4+(V_3-V_4)\times$	11.2 /	37.8	V _{62"}	$V_6 + (V_5 - V_6) \times$	26.6 /	37.8
3FH	V _{63'}	V ₄			V _{63"}	V ₅		

Caution There is no connection between V_4 and V_5 terminal in the chip.

6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format : 6 bits x 2 RGBs (6 dots) Input width : 36 bits (2-pixel data)

(1) R,/L = H (Right shift)

Output	S ₁	S ₂	S ₃	S ₄	 S383	S ₃₈₄
Data	D00 to D05	D10 to D15	D ₂₀ to D ₂₅	D30 to D35	 D40 to D45	D50 to D55

(2) R,/L = L (Left shift)

Output	S ₁	S ₂	S3	S4	 S383	S ₃₈₄
Data	D ₀₀ to D ₀₅	D ₁₀ to D ₁₅	D ₂₀ to D ₂₅	D ₃₀ to D ₃₅	 D40 to D45	D ₅₀ to D ₅₅

POL	S _{2n-1} Note	S _{2n} Note
L	V ₀ to V ₄	V ₅ to V ₉
Н	V ₅ to V ₉	V ₀ to V ₄

Note S_{2n-1} (Odd output), S_{2n} (Even output)

7. RELATIONSHIP BETWEEN STB, CLK, AND OUTPUT WAVEFORM (MODE =L)

This chapter indicates relationship between STB, CLK, and output waveform in the μ PD16717.

In figure 7–2, STB = H is taken in by the rising edge of CLK [1]. However, when not satisfying the standard of tstb-clk, STB = H is taken in by the rising edge of the next CLK [1']. The latch of display data is completed by the falling edge of the next CLK which took in STB = H.

Moreover, synchronizing with the rising edge of the next CLK, driver output is started after the completion of a display data latch.

Therefore, in order to output the gray scale voltage, it is at least 3 clock necessity.

Figure 7–1. Output Circuit Block Diagram

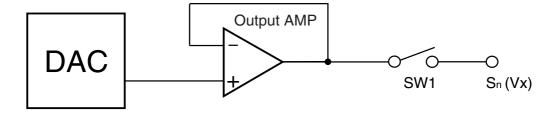
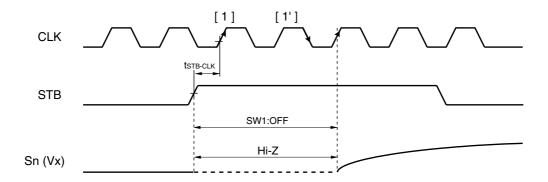



Figure 7-2. Output Circuit Block Diagram

8. RELATIONSHIP BETWEEN MODE, STB, POL AND OUTPUT WAVEFORM

MODE = H or open:

A total output serves as RESET (short circuit), and throughout STB = H outputs gray scale voltage to the LCD panel synchronizing with the falling edge of STB.

MODE = L:

This is set to STB = H and a 2 clock cycle all output outputs gray scale voltage to the LCD panel after Hi-Z. Refer to 7. RELATIONSHIP BETWEEN STB, CLK, AND OUTPUT WAVEFORM (MODE = L).

★ Figure 8–1. MODE = H or open

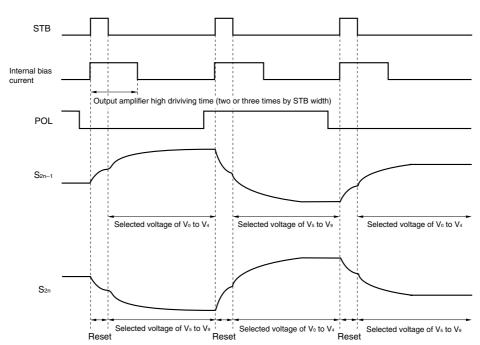
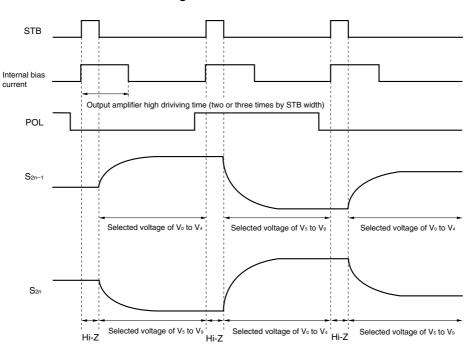



Figure 8-2. MODE = L

9. SRC PIN AND HIGH DRIVING TIME

The μ PD16717 has a current consumption of selection or driver IC simple substance is the high drive time of output amplifier controllable by the logic of SRC pin.

SRC = H or open: High drive time is twice the STB width.

SRC = L: High drive time is three times the STB width.

High drive time at counting the clock has decided in STB period, and the relationship is as follows.

The high drive time of table is the number of clocks from STB falling.

Table 9-1. Relationship between Number of Clocks in STB Period and High Drive Time

	High driv	ving time
CLK in STB period	SRC = H or open (unit: CLK)	SRC = L (unit: CLK)
Under 7CLK	8	16
8 to 15CLK	16	32
16 to 23CLK	24	48
24 to 31CLK	32	64
32 to 39CLK	40	80
40 to 47CLK	48	96
48 to 55CLK	56	112
56 to 63CLK	64	128
64 to 71CLK	72	144
72 to 79CLK	80	160
80 to 87CLK	88	176
88 to 95CLK	96	192
96 to 103CLK	104	208
104 to 111CLK	112	224
112CLK or up	Prohi	ibited

In consideration of the characteristic of the LCD panel, after the system estimates sufficient, please decide on the high driving time of output amplifier.

10. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (T_A = 25°C, V_{SS1} = V_{SS2} = 0 V)

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	V _{DD1}	-0.5 to +4.0	V
Driver Part Supply Voltage	V _{DD2}	-0.5 to +10.0	V
Logic Part Input Voltage	VII	-0.5 to V _{DD1} + 0.5	V
Driver Part Input Voltage	V _{I2}	-0.5 to V _{DD2} + 0.5	V
Logic Part Output Voltage	V _{O1}	-0.5 to V _{DD1} + 0.5	V
Driver Part Output Voltage	V _{O2}	-0.5 to V _{DD2} + 0.5	V
Operating Ambient Temperature	TA	–10 to +75	°C
Storage Temperature	T _{stg}	-55 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range (T_A = -10 to +75°C, V_{SS1} = V_{SS2} = 0 V)

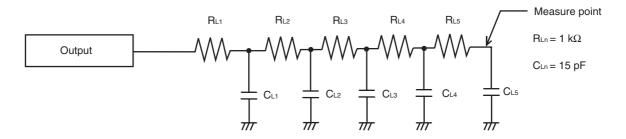
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	V _{DD1}		2.5		3.6	V
Driver Part Supply Voltage	V _{DD2}		8.0	8.5	9.0	V
High-Level Input Voltage	VIH		0.7 V _{DD1}		V _{DD1}	V
Low-Level Input Voltage	VıL		0		0.3 V _{DD1}	V
γ -Corrected Voltage	Vo to V4		0.5 V _{DD2}		V _{DD2} – 0.2	V
	V ₅ to V ₉		0.2		0.5 V _{DD2}	V
Driver Part Output Voltage	Vo		V _{SS2} + 0.2		V _{DD2} – 0.2	V
Clock Frequency	fcLK				55	MHz

Electrical Characteristics (T_A = -10 to +75°C, V_{DD1} = 2.5 to 3.6 V, V_{DD2} = 8.5 V \pm 0.5 V, V_{SS1} = V_{SS2} = 0 V)

	Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
	Input Leak Current	lıL	Exclude MODE, SRC			±1.0	μΑ
,			MODE, SRC			T.B.D.	μΑ
	High-Level Output Voltage	Vон	STHR (STHL), Ioн = 0 mA	V _{DD1} – 0.1			V
	Low-Level Output Voltage	Vol	STHR (STHL), IoL = 0 mA			0.1	V
	γ-Corrected Resistance	Rγ	V_0 to $V_4 = V_5$ to $V_9 = 4.0 \text{ V}$	9.8	13.8	23.0	kΩ
	Driver Output Current	Іvон	$V_X = 7.0 \text{ V}, V_{OUT} = 6.5 \text{ V}^{\text{Note}}$			-300	μΑ
		Ivol	Vx = 1.0 V, V _{OUT} = 1.5 V Note	300			μΑ
	Output Voltage Deviation	ΔVο	$V_{DD1} = 3.3 \text{ V}, V_{DD2} = 8.5 \text{ V},$		±7	±20	mV
	Output Swing Difference	ΔV_{P-P}	Vout = 2.0 V, 4.25 V, 6.5 V,		±2	±30	mV
	Deviation		T _A = 25°C				
	Logic Part Dynamic Current	I _{DD1}	V _{DD1}		3.2	6.0	mA
	Consumption						
	Driver Part Dynamic Current	I _{DD2}	V _{DD2} , with no load		4.6	7.0	mA
	Consumption						

Note Vx refers to the output voltage of analog output pins S₁ to S₃₈₄.

Vour refers to the voltage applied to analog output pins S1 to S384.

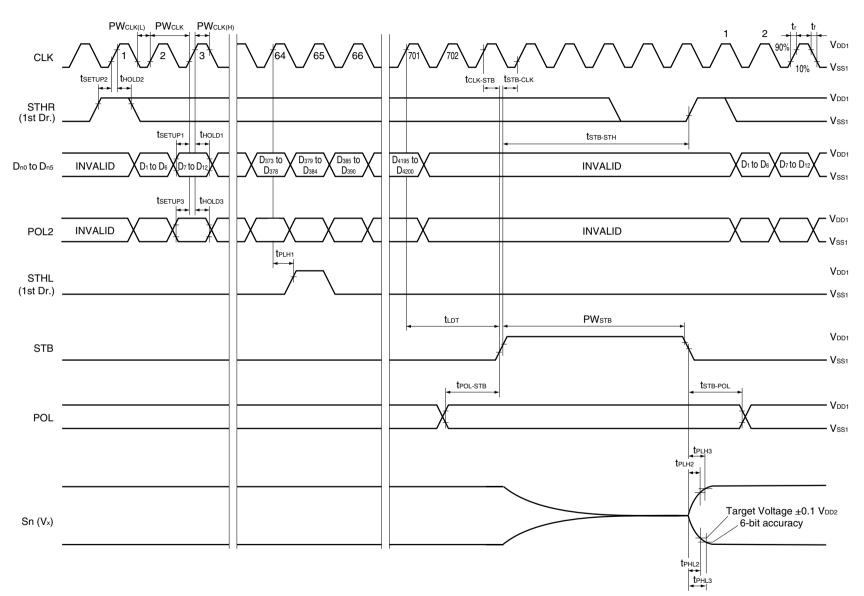

Cautions 1. fstb = 65 kHz, fclk = 54 MHz

- 2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
- 3. Refers to the current consumption per driver when cascades are connected under the assumption of XGA single-sided mounting (10 units).

Switching Characteristics (T_A = -10 to +75°C, V_{DD1} = 2.5 to 3.6 V, V_{DD2} = 8.5 V \pm 0.5 V, V_{SS1} = V_{SS2} = 0 V)

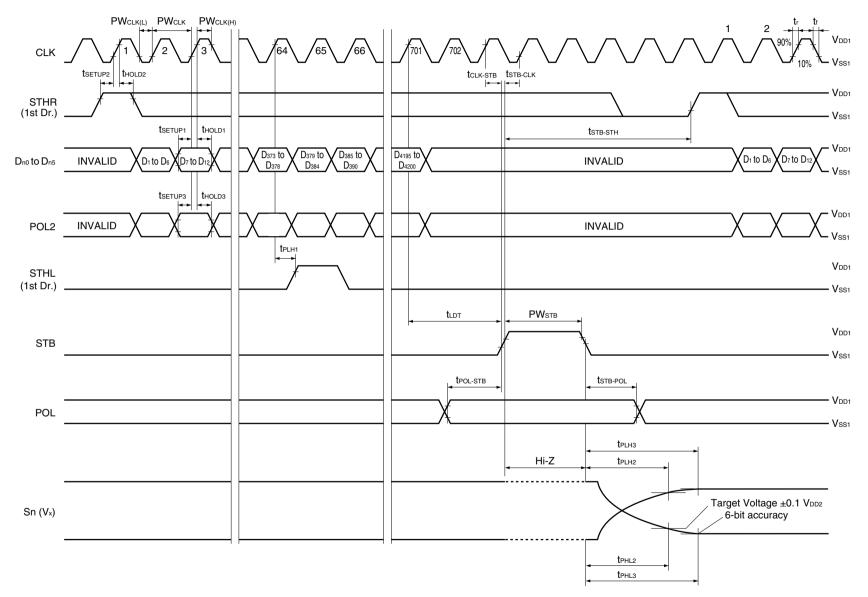
		· · · · · · · · · · · · · · · · · · ·				,
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	t PLH1	C _L = 15 pF, V _{DD1} = 2.5 to 3.6 V		10	17	ns
		C _L = 15 pF, V _{DD1} = 3.0 to 3.6 V		8	10.5	ns
Driver Output Delay Time	t _{PLH2}	C _L = 75 pF, R _L = 5 kΩ			(2.5)	μs
	t PLH3				(4)	μs
	tPHL2				(2.5)	μs
	t PHL3				(4)	μs
Input Capacitance	Cı1	Exclude STHR (STHL), T _A = 25°C			10	pF
	Cı2	STHR (STHL),T _A = 25°C			15	pF

★ <Measurement Condition>



Timing Requirements (T_A = -10 to +75°C, V_{DD1} = 2.5 to 3.6 V, V_{SS1} = 0 V, t_r = t_f = 5.0 ns)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWclk		18			ns
Clock Pulse High Period	PW _{CLK(H)}		4			ns
Clock Pulse Low Period	PW _{CLK(L)}	$2.5 \text{ V} \le \text{V}_{DD1} \le 3.0 \text{ V}$	6			ns
		$3.0 \text{ V} \leq \text{V}_{\text{DD1}} \leq 3.6 \text{ V}$	4			ns
Data Setup Time	tsetup1		2			ns
Data Hold Time	t HOLD1		2			ns
Start Pulse Setup Time	tsetup2		2			ns
Start Pulse Hold Time	tHOLD2		2			ns
POL21/22 Setup Time	tsetup3		2			ns
POL21/22 Hold Time	t HOLD3		2			ns
STB Pulse Width	PWstb		3		111	CLK
Last Data Timing	t ldt		2			CLK
CLK-STB Time	tclk-stb	$CLK \uparrow \rightarrow STB \uparrow$	6			ns
STB-CLK Time	tstb-clk	$STB \uparrow \to CLK \uparrow$	9			ns
Time Between STB and Start Pulse	t sтв-sтн	$STB \uparrow \to STHR(STHL) \uparrow$	2			CLK
POL-STB Time	tpol-stb	POL \uparrow or $\downarrow \rightarrow$ STB \uparrow	- 5			ns
STB-POL Time	tstb-pol	STB $\downarrow \rightarrow POL \downarrow or \uparrow$	6			ns


Remark Unless otherwise specified, the input level is defined to be $V_{IH} = 0.7 \text{ V}_{DD1}$, $V_{IL} = 0.3 \text{ V}_{DD1}$.

Unless otherwise specified, the input level is defined to be V_{IH} = 0.7 V_{DD1} , V_{IL} = 0.3 V_{DD1} .

Switching Characteristic Waveform(R,/L= H, MODE =L)

Unless otherwise specified, the input level is defined to be V_{IH} = 0.7 V_{DD1} , V_{IL} = 0.3 V_{DD1} .

★ 11. RECOMMENDED MOUNTING CONDITIONS

The following conditions must be met for mounting conditions of the μ PD16717.

For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).

Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions.

μPD16717N-xxx : TCP (TAB Package)

Mounting Condition	Mounting Method	Condition
Thermocompression	Soldering	Heating tool 300 to 350°C, heating for 2 to 3 seconds : pressure 100g
		(per solder)
	ACF	Temporary bonding 70 to 100°C: pressure 3 to 8 kg/cm ² : time 3 to 5
	(Adhesive	sec. Real bonding 165 to 180°C: pressure 25 to 45 kg/cm ² : time 30 to
	Conductive Film)	40 sec. (When using the anisotropy conductive film SUMIZAC1003 of
		Sumitomo Bakelite,Ltd).

Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

*μ*PD16717

Reference Documents

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades On NEC Semiconductor Devices (C11531E)

- The information in this document is current as of January, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

· (Nota)

- (1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).