MOS INTEGRATED CIRCUIT μ PD17132, 17132(A)

SMALL GENERAL-PURPOSE 4 BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17132 and μ PD17132 (A) are 4-bit single-chip microcontrollers containing a timer, power-on/power-down reset circuit, serial interface, and comparator.

For the CPU, the μ PD17132 and μ PD17132(A) employ a 17K architecture using general registers. The new architecture allows operations to be performed directly on data memory, without involving accumulators as conventionally done. In addition, each instruction is 16 bits (one word) long, allowing programming to be done efficiently.

The μ PD17P132, a one-time PROM product, is available for evaluation of the μ PD17132 and μ PD17132(A).
The μ PD17P132 is available for small-scale production of general electronic equipment.

The following user's manual completely describes the functions of the μ PD17132 and μ PD17132(A). Be sure to read it before designing an application system.
μ PD17120 Sub-Series User's Manual: IEU-1367

FEATURES

- 17K architecture: General registers, 16-bit instructions
- Program memory (ROM):
- Data memory (RAM):
- Instruction execution time:

2 K bytes (1024×16 bits)

- External interrupt:
111×4 bits
$8 \mu \mathrm{~s}$ (when fcc $=2 \mathrm{MHz}$ with RCNote oscillation)
- Comparator input:

1 line (INT pin, with sensor input)

- Timer function:

4 channels (Also usable as a 4-bit A/D converter by software)

- 3-wire serial interface:

1 channel

- Input/output pins:

1 channel

- Power-on/power-down reset function
- Supply voltage:

19 pins (including one sensor input pin)

Note The capacitor used for RC oscillation is contained in the μ PD17132.

APPLICATIONS

μ PD17132: Controlling electric appliances such as electric fans
μ PD17132(A): Electric units for automobiles and suchlike

The only difference between the μ PD17132 and μ PD17132(A) is the quality grade. Unless otherwise specified, the description of the μ PD17132 applies to the μ PD17132(A).

ORDERING INFORMATION

Part number	Package	Quality grade
μ PD17132CS $-x \times x$	24-pin plastic shrink DIP (300 mil)	Standard
μ PD17132GT $-x \times x$	24-pin plastic SOP (375 mil)	Standard
μ PD17132CS(A) $-x \times x$	24-pin plastic shrink DIP (300 mil)	Special
μ PD17132GT(A) $-x \times x$	24-pin plastic SOP (375 mil)	Special

Remark $\times X \times$ indicates the ROM code.

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

CHARACTERISTICS

Item	Description
ROM capacity	2 K bytes (1024×16 bits)
RAM capacity	111×4 bits (The stack is separated from memory.)
Stack	5 address stacks, 1 interrupt stack
Number of input/output ports	$19\left\{\begin{array}{l}\text { • } 18 \text { input/output ports } \\ \text { • } 1 \text { input port for sensing an interrupt (INT pinNote) }\end{array}\right.$
Timer	1 channel (8-bit timer)
Serial interface	1 channel (3-wire type)
Interrupt	- 1 external interrupt (INT) $\quad\left\{\begin{array}{l}\text { • Detection of the rising edge, falling edge, or both edges } \\ \text { can be selected. }\end{array}\right\}$
Comparator	- Built-in comparator compares signals with the external $\mathrm{V}_{\text {ref }}$ pin signal. - Also usable as a 4-bit A/D converter using 15 internal reference voltage levels ($1 / 16$ to $\left.15 / 16 V_{D D}\right)$.
Execution time of an instruction	$8 \mu \mathrm{~s}$ (when fcc $=2 \mathrm{MHz}$ with RC oscillation)
Standby function	STOP, HALT
Power-on/power-down reset circuit	Built-in (Can be used in an application circuit where V_{dD} is $5 \mathrm{~V} \pm 10 \%$)
Operating power voltage	- $V_{D D}=2.7$ to 5.5 V - $V_{D D}=4.5$ to 5.5 V (when the power-on/power-down reset functions are used)
Package	- 24-pin plastic shrink DIP (300 mil) - 24-pin plastic SOP (375 mil)
One-time PROM product	$\mu \mathrm{PD} 17 \mathrm{P} 132$ (The quality grade is "Standard.")

Note The INT pin can be used as an input pin (sensor input) when the external interrupt function is not used. The status of the pin is read with the INT flag of the control register, not with the port register.

Caution Although a PROM product is highly compatible with a masked ROM product in respect of functions, they differ in internal ROM circuits and part of electrical characteristics. Before changing the PROM product to the masked ROM product in an application system, evaluate the system carefully using the masked ROM product.

CONTENTS

1. PIN CONFIGURATION (TOP VIEW) 6
2. BLOCK DIAGRAM 7
3. PINS 8
3.1 PIN FUNCTIONS 8
3.2 PIN EQUIVALENT CIRCUIT 9
3.3 HANDLING UNUSED PINS 11
3.4 NOTES ON USE OF THE RESET AND INT PINS 12
4. PROGRAM MEMORY (ROM) 13
4.1 PROGRAM MEMORY ORGANIZATION 13
5. PROGRAM COUNTER (PC) 14
5.1 PROGRAM COUNTER CONFIGURATION 14
5.2 PROGRAM COUNTER OPERATION 14
6. STACK 15
7. DATA MEMORY (RAM) 16
7.1 DATA MEMORY CONFIGURATION 16
8. GENERAL REGISTER (GR) 17
8.1 GENERAL REGISTER POINTER (RP) 17
9. SYSTEM REGISTER (SYSREG) 18
9.1 SYSTEM REGISTER CONFIGURATION 18
10. REGISTER FILE (RF) 20
10.1 REGISTER FILE CONFIGURATION 20
10.2 FUNCTIONS OF THE REGISTER FILE 21
11. DATA BUFFER (DBF) 22
11.1 DATA BUFFER CONFIGURATION 22
11.2 FUNCTIONS OF THE DATA BUFFER 23
^ 12. ALU BLOCK 24
12.1 ALU BLOCK CONFIGURATION 24
12. PORTS 26
13.1 PORT OA (POA0, POA1, POA $2, \mathrm{POA}_{3}$) 26
13.2 PORT OB (POB0, POB1, POB2, POB 3) 26
13.3 PORT OC (POCo/Cino, POC $1 / \mathrm{Cin}_{1}, \mathrm{POC}_{2} / \mathrm{Cin}_{2}, \mathrm{POC}_{3} / \mathrm{Cin}_{3}$) 26
13.4 PORT OD (POD $\left./ \overline{\mathrm{SCK}}, \mathrm{POD}_{1} / \mathrm{SO}, \mathrm{POD}_{2} / \mathrm{SI}, \mathrm{POD}_{3} / \overline{\mathrm{TMOUT}}\right)$ 27
13.5 PORT OE (POE $0, \mathrm{POE}_{1} / \mathrm{V}_{\text {ref }}$) 28
13.6 NOTES ON MANIPULATING PORT REGISTERS 30
13. 8-BIT TIMER COUNTER (TM) 31
14.1 CONFIGURATION OF 8-BIT TIMER COUNTER 31
14.2 OUTPUTTING A TIMER SIGNAL 32
14. COMPARATOR 33
15. SERIAL INTERFACE (SIO) 35
16.1 FUNCTIONS OF THE SERIAL INTERFACE 35
16.2 3-WIRE SERIAL INTERFACE OPERATION MODES 37
16. INTERRUPT FUNCTIONS 39
17.1 INTERRUPT SOURCE TYPES AND VECTOR ADDRESSES 39
17.2 HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT 40
17. STANDBY FUNCTION 41
18.1 OVERVIEW OF THE STANDBY FUNCTION 41
18.2 HALT MODE 42
18.3 STOP MODE 43
18. RESET 44
19.1 RESET FUNCTIONS 44
19.2 RESETTING 45
19.3 POWER-ON/POWER-DOWN RESET FUNCTION 46
19. INSTRUCTION SET 51
20.1 LEGEND 51
20.2 LIST OF THE INSTRUCTION SET 52
20.3 ASSEMBLER (AS17K) BUILT-IN MACRO INSTRUCTIONS 53
20. ASSEMBLER RESERVED WORDS 54
21.1 MASK OPTION PSEUDO INSTRUCTIONS 54
21.2 RESERVED SYMBOLS 56
21. ELECTRICAL CHARACTERISTICS (FOR BOTH THE μ PD17132 AND μ PD17132(A)) 62
22. CHARACTERISTIC CURVES (FOR REFERENCE) 67
23. PACKAGE DRAWINGS 71
24. COMPARISON OF FUNCTIONS OF μ PD17120 SUB-SERIES 75
25. RECOMMENDED SOLDERING CONDITIONS 76
APPENDIX DEVELOPMENT TOOLS 77

1. PIN CONFIGURATION (TOP VIEW)

24-pin plastic shrink DIP
24-pin plastic SOP
μ PD17132CS-xxx
μ PD17132GT- $\times x \times$
μ PD17132CS(A)-XXX
$\mu \mathrm{PD} 17132 \mathrm{GT}(\mathrm{A})-\times \times \times$

Cino-Cin $:$	Comparator input
GND:	Ground
INT:	External interrupt input
OSC $_{0}$, OSC $_{1}:$	System clock oscillation
POA $_{0}-$ POA $_{3}:$	Port 0A
POB0-POB $_{3}:$	Port 0B
POC $_{0}-$ POC $_{3}:$	Port 0C
POD $_{0}-$ POD $_{3}:$	Port OD

P0E 0, POE $_{1}$: Port 0E
RESET: Reset input
SCK: Serial clock input/output
SI: Serial data input
SO: Serial data output
TMOUT: Timer output
VdD: Power supply
Vref: External reference voltage input

2. BLOCK DIAGRAM

Remark The terms CMOS and N-ch in parentheses indicate the output form of the port.
CMOS: CMOS push-pull output
N -ch: $\quad \mathrm{N}$-channel open-drain output (Each pin can contain pull-up resistor as specified using a mask option.)

3. PINS

3.1 PIN FUNCTIONS

Pin No.	Pin name	Function	Output	After reset
1	GND	Ground	-	-
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{OSC}_{1} \\ & \mathrm{OSC}_{0} \end{aligned}$	For system clock oscillation Resistor is connected from OSC ${ }_{0}$ to OSC $_{1}$.	-	-
4	$\overline{\text { RESET }}$	Reset input pin - Pull-up resistor incorporation specifiable by mask option	-	Input
5-8	POAо-P0A3	Port 0A - 4-bit input/output port - Input/output setting allowed in units of 1 bit	CMOS push-pull	Input
9-12	P0B0-P0B3	Port 0B - 4-bit input/output port - Input/output setting allowed in units of 4 bits	CMOS push-pull	Input
13-16	P0Co/Cino$\mathrm{POC}_{3} / \mathrm{Cin}_{3}$	Port 0C. Analog voltage is supplied to the comparator through these pins. - $\mathrm{POCo}_{0}-\mathrm{POC}_{3}$ - 4-bit input/output port - Input/output setting allowed in units of 1 bit - Cino-Cin3 - Analog input for the comparator	CMOS push-pull	$\begin{aligned} & \text { Input } \\ & \text { (POC) } \end{aligned}$
17	INT	External interrupt request or sensor signal	-	Input
18 19 20 21	POD $0 / \overline{S C K}$ POD $1 / \mathrm{SO}$ P0D2/SI POD $3 /$ TMOUT	Pin for port 0D, timer output, serial data input, serial data output, and serial clock input/output - POD $0-\mathrm{POD}_{3}$ - 4-bit input/output port - Input/output setting allowed in units of 1 bit - Pull-up resistor incorporation specifiable by mask option in units of 1 bit - $\overline{\mathrm{SCK}}$ - Serial clock input/output - SO - Serial data output - SI - Serial data input - TMOUT - Timer output	N -ch open drain	Input (POD)
$\begin{aligned} & 22 \\ & 23 \end{aligned}$	POE 0 P0E $/{ }_{1} / V_{\text {ref }}$	Port 0E. Reference voltage is supplied to the comparator through these pins. - POE 0 and POE 1 - 2-bit input/output port - Input/output setting allowed in units of 1 bit - Pull-up resistor incorporation specifiable by mask option - $\mathrm{V}_{\text {ref }}$ - Input of external reference voltage for the comparator	N -ch open drain	Input (P0E)
24	VdD	Power supply	-	-

3.2 PIN EQUIVALENT CIRCUIT

Below are simplified diagrams of the input/output circuits for each pin.
(1) POA, POB

(2) POC

(3) POD

(4) POE_{0}

(6) INT

Schmit trigger input with hysteresis characteristics
(7) RESET

^ 3.3 HANDLING UNUSED PINS

Connect unused pins as follows:
Table 3-1 Handling Unused Pins

Pin			Recommended conditions and handling	
			Internal	External
Port	Input mode	POA, P0B, POC	-	Connect to VDD or ground through resistors for each pin. Note 1
		POD, P0E	Pull-up resistors that can be specified with the mask option are not incorporated.	
			Pull-up resistors that can be specified with the mask option are incorporated.	Leave open.
	Output mode	POA, POB, POC (CMOS ports)	-	Leave open.
		P0D, P0E (N-ch open-drain port)	Outputs low level without pull-up resistors that can be specified with the mask option.	
			Outputs low level with pull-up resistors that can be specified with the mask option.	
External interrupt (INT)Note 2			-	Connect directly to ground.
RESETNote 3 (when only the built-in power-on/ power-down reset function is used)			Pull-up resistors that can be specified with the mask option are not incorporated.	Connect directly to Vdo.
			Pull-up resistors that can be specified with the mask option are incorporated.	

Notes 1. When a pin is pulled up to VDD (connected to VDD through a resistor) or pulled down to ground (connected to ground through a resistor) outside the chip, take the driving capacity and maximum current consumption of a port into consideration. When using high-resistance pull-up or pull-down resistors, apply appropriate countermeasures to ensure that noise is not attracted by the resistors. Although the optimum pull-up or pull-down resistor varies with the application circuit, in general, a resistor of 10 to 100 kilohms is suitable.
2. Since the INT pin is also used for setting the test mode, connect it directly to ground when the pin is not used.
3. When designing an application circuit which requires high reliability, be sure to design a circuit to which an external $\overline{\text { RESET }}$ signal can be input. Since the $\overline{R E S E T}$ pin is also used for setting the test mode, connect it to VDD directly when not used.

Caution To fix the I/O mode and output level of a pin, it is recommended that they should be specified repeatedly within a loop in a program.

3.4 NOTES ON USE OF THE RESET AND INT PINS

The $\overline{\text { RESET }}$ and INT pins have the test mode selecting function for testing the internal operation of the μ PD17132 (IC test), besides the functions shown in Section 3.1.

Applying a voltage exceeding VDD to the $\overline{\text { RESET }}$ or INT pin causes the μ PD17132 to enter the test mode. When noise exceeding VDD comes in during normal operation, the device is switched to the test mode.

For example, if the wiring from the $\overline{\text { RESET }}$ or INT pin is too long, noise may be induced on the wiring, causing this mode switching.

When installing the wiring, lay the wiring in such a way that noise is suppressed as much as possible. If noise yet arises, use an external part to suppress it as shown below.

- Connect a diode with low V_{F} between the pin and Vdo.

4. PROGRAM MEMORY (ROM)

The μ PD17132 is loaded with a 2K-byte (1024×16 bit) mask ROM as program memory.
The program memory address is specified by the program counter.
Program memory stores the program and the constant data table. The reset start address and interrupt vector addresses are assigned to 0000 H to 0003 H in program memory.

4.1 PROGRAM MEMORY ORGANIZATION

Fig. 4-1 shows a program memory map. Branch instructions, subroutine calls, and table references can specify any address in program memory.

Fig. 4-1 Program Memory Map for μ PD17132

5. PROGRAM COUNTER (PC)

The program counter is used to specify an address in program memory.

5.1 PROGRAM COUNTER CONFIGURATION

As shown in Fig. 5-1, the program counter is a 10-bit binary counter.

Fig. 5-1 Program Counter

5.2 PROGRAM COUNTER OPERATION

Normally, the program counter is automatically incremented each time a command is executed. The memory address at which the next instruction to be executed is stored is assigned to the program counter under the following conditions: At reset; when a branch, subroutine call, return, or table referencing instruction is executed; or when an interrupt is received.

Table 5-1 Value of the Program Counter After an Instruction Is Executed

Program counter					ram cour	unter				
Instruction	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
During reset	0	0	0	0	0	0	0	0	0	0
BR addr	Value set by addr									
CALL addr										
BR @AR CALL@AR MOVT DBF, @AR	Value in the address register (AR)									
RET RETSK RETI	Value in the address stack location pointed to by the stack pointer (return address)									
During interrupt	Vector address for the interrupt									

6. STACK

Fig. 6-1 shows the stack configuration. The stack consists of five address stack registers and one interrupt stack register.

The stack is used to save the return address during execution of subroutine calls and table reference instructions. When an interrupt occurs, the program return address and the program status work (PSWORD) are automatically saved in the stack. Then, all bits of the bank and PSWORD are cleared to 0 .

Fig. 6-1 Stack Configuration

Stack pointer (SP)							Addr	$\begin{gathered} \text { ss ste } \\ \text { (AS } \end{gathered}$					
b_{2}	b_{1}	bo		b9	b_{8}	b_{7}	b_{6}	b_{5}	b_{4}	b_{3}	b_{2}	b_{1}	bo
SPb2	SPb ${ }_{1}$	SPbo	$\rightarrow \mathrm{OH}$			Address stack register 0							
						Address stack register 1							
			$-2 \mathrm{H}$			Address stack register 2							
			$\rightarrow 3 \mathrm{H}$			Address stack register 3							
			$\rightarrow 4 \mathrm{H}$			Address stack register 4							

OH

Interrupt stack register			
(INTSK)			
BCDSK0 CMPSK0	CYSK0	ZSK0	IXESK0

7. DATA MEMORY (RAM)

Data memory (RAM) stores data such as operation and control data. Data can be read from or written to data memory with an instruction during normal operation.

7.1 DATA MEMORY CONFIGURATION

Data memory locations have 7-bit addresses. The three high-order bits of each address are called the row address, and the four low-order bits are called the column address.

For example, the row address of address 1 AH is 1 H . The column address is 0 AH .
Each addressed memory location is 4-bits (one nibble) long.
Data memory contains an area to which the user is allowed to store data freely, as well as areas which are reserved for the use of specific functions.

The areas reserved for specific functions are as follows:

- System register (SYSREG) (See Chapter 9.)
- Data buffer (DBF)
- Port registers
(See Chapter 11.)
(See Chapter 13.)

Fig. 7-1 Organization of Data Memory

BANKO

	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F	
0													DBF3	DBF2	DBF1	DBF0	
1											\bullet						
2											L						- Address 1AH
3																	of BANKO
4																	
5																	
6																(P0E)	
7	$\begin{array}{\|c\|} \hline \mathrm{POA} \\ (4 \mathrm{bits}) \end{array}$	$\begin{gathered} \mathrm{POB} \\ (4 \mathrm{bits}) \end{gathered}$	$\begin{gathered} \text { POC } \\ (4 \mathrm{bits}) \end{gathered}$	$\begin{gathered} \mathrm{POD} \\ (4 \mathrm{bits}) \end{gathered}$						Syste	regis						

8. GENERAL REGISTER (GR)

The general register, as the name implies, is a general register used for data transfer and manipulation. In the 17 K series, the location of the general register is not fixed. The area used for the general register is in data memory, as specified by the general register pointer (RP). Thus, part of the data memory area can be specified as the general register as required, allowing data transfer in data memory and data memory manipulation to be performed with a single instruction.

8.1 GENERAL REGISTER POINTER (RP)

RP is a pointer used to specify part of data memory as the general register. In RP, specify a desired data memory bank and row address for the general register. RP consists of seven bits: 7DH (RPH), and the three high-order bits of 7EH (RPL) in the system register (see Chapter 9).

Set a bank in RPH, and a data memory row address in RPL.

Fig. 8-1 General Register Pointer Configuration

Note Allocated to the flag BCD

9. SYSTEM REGISTER (SYSREG)

The system register (SYSREG), located in data memory, is used for direct control of the CPU.

9.1 SYSTEM REGISTER CONFIGURATION

Fig. 9-1 shows the allocation address of the system register in data memory. As shown in Fig. 9-1, the system register is allocated in addresses 74 H to 7 FH of data memory.

Since the system register is allocated in data memory, it can be manipulated using any of the instructions available for manipulating data memory. Therefore, it is also possible to put the system register in the general register.

Fig. 9-1 Allocation of System Register in Data Memory
Column address

Fig. 9-2 shows the configuration of the system register. As shown in Fig. 9-2, the system register consists of the following seven registers.

- Address register
- Window register
- Bank register
- Index register
- Data memory row address pointer
- General register pointer (RP)
- Program status word(MP)
(AR)
(WR)
(BANK)
(IX)
(PSWORD)

Fig. 9-2 System Register Configuration

Note A bit for which 0 is written is fixed at 0 .

Remark Once the contents of PSWORD are saved in the interrupt stack register, all the five bits of PSWORD are cleared to 0 .

10. REGISTER FILE (RF)

The register file is a register used mainly for specifying conditions for peripheral hardware.
The register file can be controlled using dedicated instructions PEEK and POKE or AS17K macro instructions SETn, CLRn, and INITFLG.

10.1 REGISTER FILE CONFIGURATION

10.1.1 Configuration of the Register File

Fig. 10-1 shows the configuration of the register file.
As shown in Fig. 10-1, the register file is a register consisting of 128 nibbles (128×4 bits).
In the same way as with data memory, the register file is divided into addresses in units of four bits. It has a total of 128 nibbles specified in row addresses from 0 H to 7 H and column addresses from 0 H to 0 FH .

Address locations 00 H to 3 FH define an area called the control register.

Fig. 10-1 Register File Configuration

Column address

10.1.2 Relationship between the Register File and Data Memory

Fig. 10-2 shows the relationship between the register file and data memory.
As shown in Fig. 10-2, the register file overlaps with data memory at addresses 40 H to 7FH.
This means that, on a program, it seems that the same memory exists in the register file at addresses 40 H to 7 FH and in the data memory at addresses 40 H to 7 FH .

Fig. 10-2 Relationship Between the Register File and Data Memory

10.2 FUNCTIONS OF THE REGISTER FILE

10.2.1 Functions of the Register File

The register file is a collection of registers in which peripheral hardware conditions are set with the PEEK instruction or POKE instruction.

The register used to control the peripheral hardware is located at addresses 00 H to 3 FH . This area is called the control register.

Addresses 40 H to 7 FH of the register file constitute normal data memory. Thus, not only the MOV instruction, but also the PEEK and POKE instructions, can be used to enable this part to perform read and write operations.

10.2.2 Control Register Functions

The peripheral hardware whose conditions can be controlled by control registers is listed below.
For details concerning peripheral hardware and the control register, see the section for the peripheral hardware concerned.

- Ports
- 8-bit timer counter (TM)
- Serial interface (SIO)
- Interrupt function
- Stack pointer (SP)

11. DATA BUFFER (DBF)

The data buffer consists of four nibbles allocated in addresses 0CH to OFH in BANKO.
The data buffer acts as a data storage area for the CPU peripheral hardware (address register, serial interface, and timer) through use of the GET and PUT instructions. It also acts as data storage used for receiving and transferring data. By using the MOVT DBF, and @AR instructions, fixed data in program memory can be read into the data buffer.

11.1 DATA BUFFER CONFIGURATION

Fig. 11-1 shows the allocation of the data buffer in data memory.
As shown in Fig. 11-1, the data buffer is allocated in address locations 0 CH to 0 FH in data memory and consists of 4 nibbles (4×4 bits), totalling 16 bits.

Fig. 11-1 Allocation of the Data Buffer

Fig. 11-2 shows the configuration of the data buffer. As shown in Fig. 11-2, the data buffer is made up of sixteen bits with its least significant bit in bit 0 of address 0 FH and its most significant bit in bit 3 of address 0CH.

Fig. 11-2 Data Buffer Configuration

Because the data buffer is allocated in data memory, it can be used in any of the data memory manipulation instructions.

11.2 FUNCTIONS OF THE DATA BUFFER

The data buffer has two separate functions.
The data buffer is used for data transfer with peripheral hardware. The data buffer is also used for reading constant data in program memory. Fig. 11-3 shows the relationship between the data buffer and peripheral hardware.

Fig. 11-3 Relationship Between the Data Buffer and Peripheral Hardware

12. ALU BLOCK

The ALU is used for performing arithmetic operations, logical operations, bit evaluations, comparison evaluations, and rotations on 4-bit data.

12.1 ALU BLOCK CONFIGURATION

Fig. 12-1 shows the configuration of the ALU block.
As shown in Fig. 12-1, the ALU block consists of the main 4-bit data processor, temporary registers A and B, the status flip-flop for controlling the status of the ALU, and the decimal conversion circuit for use during arithmetic operations in BCD.

As shown in Fig. 12-1, the status flip-flop consists of the following flags: Zero flag flip-flop, carry flag flip-flop, compare flag flip-flop, and the BCD flag flip-flop.

Each flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD: addresses 7EH, 7FH) located in the system register. The flags in the program status word are the following: Zero flag (Z), carry flag (CY), compare flag (CMP), and the BCD flag (BCD).

Fig. 12-1 Configuration of the ALU

13. PORTS

13.1 PORT OA (POA0, POA $1, \mathrm{POA}_{2}, \mathrm{POA}_{3}$)

Port 0A is a 4-bit input/output port with an output latch. It is mapped into address 70 H in data memory. The output format is CMOS push-pull output.

Input or output can be specified bit-by-bit. Input/output can be specified by POABIOO to P0ABIO3 (address 35H) in the register file.

At reset, POABIOn is $0(\mathrm{n}=0$ to 3) and all POA pins are input ports. The contents of the port output latch are 0 .

Table 13-1 Writing into and Reading from the Port Register (0.70H)

POABIOn RF: 35H	Pin input/output	BANKO 70H	
		Write	Read
0	Input	Writable to the POA output latch	POA pin status
1	Output		POA output latch contents

13.2 PORT OB (POB $\left.0, \mathrm{POB}_{1}, \mathrm{POB}_{2}, \mathrm{POB}_{3}\right)$

Port OB is a 4-bit input/output port with an output latch. It is mapped into address 71 H of BANKO in data memory. The output format is CMOS push-pull output.

Input or output can be specified in 4-bit units. Input/ output is specified by POBGIO (bit 0 in address 24 H) in the register file.

At reset, POBGIO is 0 and all POB pins are input ports. The value of the port $0 B$ output latch is 0 .

Table 13-2 Writing into and Reading from the Port Register (0.71 H)

POBGIO RF: 24H, bit 0	Pin input/output	BANK0 71H	
		Write	Read
0	Input	Writable to the POB output latch	POB pin status
1	Output		POB output latch contents

13.3 PORT OC (POCo/Cino, P0C $1 /$ Cin $_{1}, \mathrm{POC}_{2} / \mathrm{Cin}_{2}, \mathrm{POC}_{3} / \mathrm{Cin}_{3}$)

Port OC is a 4-bit input/output port with an output latch. It is mapped into address 72 H of BANKO in data memory. The output format is CMOS push-pull output.

Input or output can be specified bit-by-bit. Input/output can be specified by P0CBIOO to P0CBIO3 (address 34H) in the register file.

Port 0C can also be used as an analog input to the comparator. P0COIDI to P0C3IDI (address 23H) in the register file are used to switch the port and analog input pin.

CMPCH0 and CMPCH1 (RF: address 1CH) are used to switch the analog input pin. To use POC pins as the input pins of the comparator, set POCBIOn to 0 so that they are set as input ports. (See Chapter 15.)

At reset, POCBIOn and POCnIDI are $0(\mathrm{n}=0$ to 3$)$ and all POC pins are input ports. The contents of the port output latch are 0.

Table 13-3 Register File Contents and Pin Functions

P0CnIDI RF: 23 H	$\begin{aligned} & \text { P0CBIOn } \\ & \text { RF: } 34 \mathrm{H} \end{aligned}$	Function	BANKO 72H	
			Write	Read
0	0	Input port	Writable to the POC output latch	POC pin status
	1	Output port		POC output latch contents
1	0	Comparator analog input Note 1		POC pin status
	1	Output port and comparator analog inputNote 2		POC output latch contents

Notes 1. Normal setting when the pins are used as comparator analog input pins.
2. Functions as an output port. If a comparator start instruction is executed, output data and external circuitry/logic must be considered for the conversion contents.

13.4 PORT OD (PODo/ $\overline{\mathrm{SCK}}, \mathrm{POD}_{1} / \mathrm{SO}, \mathrm{POD}_{2} / \mathrm{SI}, \mathrm{POD}_{3} / \overline{\mathrm{TMOUT}}$)

Port OD is a 4-bit input/output port with an output latch. It is mapped into address 73 H in data memory. The output format is N-ch open-drain output. By mask option, the port can contain pull-up resistors bit-by-bit.

Input or output can be specified bit-by-bit. Input/output is specified with PODBIOO to PODBIO3 (address 33H) in the register file.

At reset, PODBIOn is set to $0(\mathrm{n}=0$ to 3) and all POD pins become input ports. The contents of the port output latch become 0 . The output latch contents remain unchanged even if PODBIOn changes from 1 to 0 .

Port OD can also be used for serial interface input/output or timer carry output. SIOEN (bit 0 in address OAH) in the register file is used to switch ports ($\mathrm{P} 0 \mathrm{D}_{0}$ to POD_{2}) to serial interface input/output ($\overline{\mathrm{SCK}}, \mathrm{SI}, \mathrm{SO}$) and vice versa. TMOSEL (bit 0 in address 12 H) in the register file is used to switch a port (POD_{3}) to timer carry output $(\overline{\mathrm{TMOUT}}$) and vice versa. If TMOSEL $=1$ is selected, 1 is output at timer reset. This output is inverted every time a timer count value matches the modulo register contents.

Table 13-4 Register File Contents and Pin Functions

Register file value			Pin function			
TMOSEL RF: 12 H Bit 0	SIOEN RF: OAH Bit 0	PODBIOn RF: 33H	PODo/SCK	POD1/SO	P0D2/SI	$\mathrm{POD}_{3} / \overline{\text { TMOUT }}$
0	0	0	Input port			
		1	Output port			
	1	0	$\overline{\text { SCK }}$	SO	SI	Input port
		1				Output port
1	0	0	Input port			TMOUT
		1	Output port			
	1	0	$\overline{\text { SCK }}$	SO	SI	
		1				

Table 13-5 Contents Read from the Port Register (0.73 H)

Port mode	Contents read from the port register (0.73H)	
Input port		P0D pin status
Output port	P0D output latch contents	
$\overline{\text { SCK }}$	An internal clock is selected as a shift clock.	P0D output latch contents
	An external clock is selected as a shift clock.	$\overline{\text { SCK pin status }}$
	UndefinedNote	
SI	SI pin status	
$\overline{\text { TMOUT }}$	POD output latch contents	

Note See Chapter 16.

13.5 PORT OE (P0E0, P0E $\left.1 / V_{\text {ref }}\right)$

Port 0E is a 2-bit input/output port with an output latch. It is mapped into bits 0 and 1 in address 6 FH in data memory. The output format is N -ch open-drain output. By mask option, the port can contain pull-up resistors bit-by-bit.

The $\mathrm{P} 0 \mathrm{E}_{1} / \mathrm{V}_{\text {ref }}$ is used also for external reference voltage input of the comparator. It is used either as a port of for external reference voltage input, according to the value of the reference voltage selection register (CMPVREFO to CMPVREF3). (See Chapter 15.)

Input or output can be specified bit-by-bit. Input/output is specified by P0EBIO0 and P0EBIO1 (bits 0 and 1 in address 32 H) in the register file.

When a read instruction is executed, not the output latch data but the pin status is read regardless of the input or output mode.

At reset, POEBIOn is set to $0(\mathrm{n}=0$ and 1$)$ and each POE pin becomes input port. The contents of the port output latch are 0.

The write instruction specified for bits 2 and 3 of address 6 FH is invalidated. If it is executed, 0 is read out.

Table 13-6 Writing into and Reading from the Port Register (0.6FH.0 and 0.6FH.1)

($\mathrm{n}=0$ and 1)			
P0EBIOn RF: 32H	Pin input/output	BANK0 6FH	
		Write	Read
0	Input	Writable to the P0E output	P0E pin status
1	Output	latch	

13.6 NOTES ON MANIPULATING PORT REGISTERS

The states of only the port 0E pins of the μ PD17132 can be read even when the port pins have been set to output mode.

When a port register is manipulated with a built-in macro instruction (such as SETn or CLRn) or an AND, OR, or XOR instruction, the states of those pins for which the state should remain unchanged may change unexpectedly.

Especially when the port 0 E pins are set to low externally, always take the possibility of this change in the states of the pins into consideration.

When a CLR1 P0E1 instruction (identical to an AND 6FH, \#1101B instruction) is applied to the port 0E pins, the corresponding port register and internal states are changed, as shown in Fig. 13-1.

Assume that the states of port 0E are those shown in Fig. 13-1 (1). Pins P0E1 and P0E0, both used as output pins, output high level, while pin POEO forcibly set to low externally.
$\binom{$ Although the μ PD17132 does not support pins P0E3 and P0E2, they are virtually assumed to exist within a }{ program. }
When a CLR1 P0E1 instruction is executed to set pin $P 0 E_{1}$ to low, the states of the port 0 E pins change as shown in Fig. 13-1 (2). The port register changes such that pin $\mathrm{P} 0 \mathrm{E}_{1}$ output low level and pin $\mathrm{P} 0 \mathrm{E}_{0}$, required to output high level, actually output low level. This is because the CLR1 P0E1 instruction has been applied to the states of the port 0E pins, but not to the states of the port register.

To prevent this problem, use another instruction, such as a MOV instruction, to specify the states of all port 0E pins, not merely the states of those pins whose states are to be changed. In this example, it is recommended that a MOV 6FH, \#1101B instruction be used to set only pin P0E 1 to low.

When some port 0E pins are used as input pins and others as output pins for the same reason, the input pins must be set to input mode (POEBIOn $=0$)

Fig. 13-1 Changes in the Port Register According to the Execution of a CLR1 P0E1 Instruction
(1) Before the instruction is executed

	POE_{3}	POE_{2}	$\mathrm{P}_{2} E_{1}$	$\mathrm{P}^{2} E_{0}$
Port register	Does not exist.		1	1
Internal state	-	-	H output	H output
Pin state	-	-	H	L (forcible)

(2) After the instruction is executed

	P_{2}	$\mathrm{P}_{3} E_{2}$	$\mathrm{P}_{3} E_{1}$	$\mathrm{P}_{1} E_{0}$
Port register	Does not exist.		0	0
Internal state	-	-	L output	L output
Pin state	-	-	L	L

H: High level, L: Low level

14. 8-BIT TIMER COUNTER (TM)

An 8-bit timer counter is incorporated in μ PD17132.
The timer is controlled by hardware operation with the PUT/GET instruction or by register operation in the register file with the PEEK/POKE instruction.

14.1 CONFIGURATION OF 8-BIT TIMER COUNTER

Fig. 14-1 shows the configuration of the 8 -bit timer counters. An 8 -bit timer counter consists of an 8 -bit counter register, 8 -bit modulo register, comparator (compares counter register values and modulo register values), and selector (for count pulse selection).

Caution The modulo register is a write-only register.

The counter register is a read-only register.

Fig. 14-1 Configuration of the 8-Bit Timer Counter

Table 14-1 Source Clock

Register file value		Source clock to be selected
TMCK1	TMCK0	
0	0	$\mathrm{fcc} / 256$
0	1	$\mathrm{fcc} / 32$
1	0	fcc/2048
1	1	External clock input to the INT pin

14.2 OUTPUTTING A TIMER SIGNAL

The $\mathrm{POD}_{3} /$ TMOUT pin functions as a timer match signal output pin when the TMOSEL flag is set to 1 . The PODBIO3 value has nothing to do with this setting.

The timer contains a match signal output flip-flop. It reverses the output each time the comparator of the 8-bit timer outputs a match signal. When the TMOSEL flag is set to 1 , the contents of this flip-flop are output to the POD3/ TMOUT pin.

The $\mathrm{POD}_{3} /$ TMOUT pin is an N -ch open-drain output pin. The mask option enables this pin to contain a pull-up resistor. If this pin does not contain a pull-up resistor, its initial status is high impedance.

An internal timer output flip-flop starts operating when TMEN is set to 1 . To make the flip-flop start output beginning at an initial value, set 1 in TMRES and reset the flip-flop.

15. COMPARATOR

The comparator of μ PD17132 compares the analog input ($\mathrm{C}_{\mathrm{in} 0}$ to $\mathrm{C}_{\mathrm{in} 3}$) voltage with the reference voltage, then stores the comparison result in CMPRSLT (RF: 1EH, bit 0). There is one external type and 15 internal types of reference voltage.

By using 15 types of internal reference voltage, the comparator can also be used by software as a 4-bit A/D converter.

Table 15-1 lists the reference voltages to be selected.

Fig. 15-1 Comparator Configuration

Table 15-1 Reference Voltage List

Register file value				
Reference voltage to be selected				
	CMPVREF2	CMPVREF1	CMPVREF0	
0	0	0	0	Voltage applied to the $\mathrm{V}_{\text {ref }} \mathrm{pin}$
0	0	0	1	$1 / 16 \mathrm{~V}_{\mathrm{DD}}$
0	0	1	0	$2 / 16 \mathrm{~V}_{\mathrm{DD}}\left(1 / 8 \mathrm{~V}_{\mathrm{DD}}\right)$
0	0	1	1	$3 / 16 \mathrm{~V}_{\mathrm{DD}}$
0	1	0	0	$4 / 16 \mathrm{~V}_{\mathrm{DD}}\left(1 / 4 \mathrm{~V}_{\mathrm{DD}}\right)$
0	1	0	1	$5 / 16 \mathrm{~V}_{\mathrm{DD}}$
0	1	1	0	$6 / 16 \mathrm{~V}_{\mathrm{DD}}\left(3 / 8 \mathrm{~V}_{\mathrm{DD}}\right)$
0	1	1	1	$7 / 16 \mathrm{~V}_{\mathrm{DD}}$
1	0	0	0	$8 / 16 \mathrm{~V}_{\mathrm{DD}}\left(1 / 2 \mathrm{~V}_{\mathrm{DD}}\right)$
1	0	0	1	$9 / 16 \mathrm{~V}_{\mathrm{DD}}$
1	0	1	0	$10 / 16 \mathrm{~V}_{\mathrm{DD}}\left(5 / 8 \mathrm{~V}_{\mathrm{DD}}\right)$
1	0	1	1	$11 / 16 \mathrm{~V}_{\mathrm{DD}}$
1	1	0	0	$12 / 16 \mathrm{~V}_{\mathrm{DD}}\left(3 / 4 \mathrm{~V}_{\mathrm{DD}}\right)$
1	1	0	1	$13 / 16 \mathrm{~V}_{\mathrm{DD}}$
1	1	1	0	$14 / 16 \mathrm{~V}_{\mathrm{DD}}\left(7 / 8 \mathrm{~V}_{\mathrm{DD}}\right)$
1	1	1	1	$15 / 16 \mathrm{~V}_{\mathrm{DD}}$

16. SERIAL INTERFACE (SIO)

The serial interface consists of an 8-bit shift register (SIOSFR), serial mode register, and serial clock counter. It is used for serial data input/output.

16.1 FUNCTIONS OF THE SERIAL INTERFACE

This serial interface provides three signal lines: serial clock I/O pin (SCK), serial data output pin (SO), and serial data input pin (SI). It allows 8 bits to be sent or received in synchronization with clocks. It can be connected to peripheral input/output devices using any method with a mode compatible to that used by the 75 X or 78 K series.

(1) Serial clock

Three types of internal clocks and one type of external clock are able to be selected. If an internal clock is selected as a serial clock, it is automatically output to the PODo/SCK pin.

Table 16-1 Shift Clock

Register file value		Shift clock to be selected
SIOCK1	SIOCK0	
0	0	External clock input to the $\overline{\mathrm{SCK}}$ pin
0	1	$\mathrm{fcc} / 16$
1	0	$\mathrm{fcc} / 128$
1	1	$\mathrm{fcc} / 1024$

(2) Transmission

When SIOEN is set to 1 , the pins of port $0 \mathrm{D}\left(\mathrm{POD} 0 / \overline{\mathrm{SCK}}, \mathrm{POD}_{1} / \mathrm{SO}, \mathrm{POD}_{2} / \mathrm{SI}\right)$ function as the pins of the serial interface. The serial interface operates in synchronization with the falling edge of the external or internal clock by setting SIOTS to 1 . When SIOTS is set to 1 , IRQSIO is automatically cleared.
Transmission starts from the most significant bit of the shift register in synchronization with the falling edge of the serial clock. SI pin information is stored in the shift register starting at the most significant bit in synchronization with the rising edge of the serial clock.
When the transfer of 8 -bit data is completed, SIOTS is automatically cleared to 0 and IRQSIO is set to 1 .

Remark Serial transmission starts only from the most significant bit of the shift register contents. It is not possible to start transmission from the least significant bit. SI pin status is always stored in the shift register in synchronization with the rising edge of the serial clock.

Fig. 16-1 Block Diagram of the Serial Interface

Note The output latch of the shift register is also used as that of the POD 1 pin. Therefore, executing an output instruction for the POD 1 pin changes the output latch status of the shift register.

16.2 3-WIRE SERIAL INTERFACE OPERATION MODES

Two modes can be used for the serial interface. If the serial interface function is selected, the POD2/SI pin always takes in data in synchronization with the serial clock.

- 8-bit transmission and reception mode (simultaneous transmission and reception)
- 8-bit reception mode (with the SO pin set to the high impedance status)

Table 16-2 Serial Interface Operation Mode

SIOEN	SIOHIZ	$\mathrm{POD}_{2} / \mathrm{SI}$ pin	P0D1/SO pin	Serial interface operation mode
1	0	SI	SO	8-bit transmission and reception mode
1	1	SI	P0D1 (input)	8-bit reception mode
0	\times	POD2 (I/O)	P0D1 (I/O)	General port mode

x : Don't care
(1) 8-bit transmission and reception mode (simultaneous transmission and reception)

Serial data input/output is controlled by a serial clock. The most significant bit of the shift register is output from the SO line with a falling edge of the serial clock ($\overline{\mathrm{SCK}})$. The contents of the shift register is shifted one bit and at the same time, data on the SI line is loaded into the least significant bit of the shift register.
The serial clock counter counts serial clock pulses. Every time it counts eight clocks, the internal interrupt request flag is set to 1 (IRQSIO $\leftarrow 1$).

Fig. 16-2 Timing of 8-Bit Transmission and Reception Mode (Simultaneous Transmission and Reception)

Remark DIn : Input serial data
DOn: Output serial data
(2) 8-bit reception mode (SO pin in the high impedance status)

When SIOHIZ is 1 , the $\mathrm{POD}_{1} / \mathrm{SO}$ pin is in the high impedance status. If serial clock supply starts by writing 1 in SIOTS, only the reception function of the serial interface operates.
The POD $1 / \mathrm{SO}$ pin is in the high impedance status and can be used for input port (POD ${ }_{1}$).

Fig. 16-3 Timing of the 8-Bit Reception Mode

Remark DIn: Input serial data
(3) Operation stop mode

If the value in SIOTS (RF: 1AH, bit 3) is 0 , the serial interface enters operation stop mode. In this mode, no serial transfer occurs.

In this mode, the shift register does not perform shifting and can be used as an ordinary 8-bit register.

17. INTERRUPT FUNCTIONS

The μ PD17132 has three interrupt sources: two internal interrupt functions and one external interrupt function. It can be used in various applications.

The interrupt control circuit of the μ PD17132 has the features listed below. This circuit enables very high-speed interrupt handling.
(a) Used to determine whether an interrupt can be accepted with the interrupt mask enable flag (INTE), which is controlled by the El or DI instruction, and interrupt enable flag (IP $\times \times \times$).
(b) The interrupt request flag (IRQ×××) can be tested or cleared. (Interrupt generation can be checked by software.)
(c) Standby mode (STOP, HALT) can be released by an interrupt request. (Release source can be selected by the interrupt enable flag.)

Cautions 1. In interrupt handling, the BCD, CMP, CY, Z, and IXE flags are saved in the stack automatically by the hardware for up to three levels of multiple interrupts. The DBF and WR are not saved by the hardware when peripheral hardware such as the timer or serial interface is accessed in interrupt handling. It is recommended that the DBF and WR be saved in RAM by the software at the beginning of interrupt handling. Saved data can be loaded back into the DBF and WR immediately before the end of interrupt handling.
2. Since the interrupt stack has only one level, multiple interrupts cannot be performed by hardware. When more than one interrupt is received, the data from the first interrupt is lost.

17.1 INTERRUPT SOURCE TYPES AND VECTOR ADDRESSES

For every interrupt in the μ PD17132, when the interrupt is accepted, a branch occurs to the vector address associated with the interrupt source. This method is called the vectored interrupt method. Table 17-1 lists the interrupt source types and vector addresses.

If two or more interrupt requests occur or multiple suspended interrupt requests are enabled at the same time, they are handled according to priorities shown in Table 17-1.

Table 17-1 Interrupt Source Types

Interrupt source	Priority	Vector address	IRQ flag	IP flag	IEG flag	Internal/ external	Remarks
INT pin (RF:0FH, bit 0)	1	0003 H	IRQ RF:3FH,, bit 0	IP RF:2FH, bit 0	IEGMD0,1 RF:1FH bit 0, 1	External	Rising edge, falling edge or rising/falling edge (both) can be selected.
Timer	2	0002 H	IRQTM RF:3EH, bit 0	IPTM RF:2FH, bit 1	-	Internal	
Serial interface	3	0001 H	IRQSIO RF:3DH, bit 0	IPSIO RF:2FH, bit 2	-	Internal	

^ 17.2 HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT

The flags of the interrupt control circuit are explained below.
(1) Interrupt request flag and the interrupt enable flag

The interrupt request flag (IRQ $\times \times \times$) is set to 1 when an interrupt request occurs. When interrupt handling is executed, the flag is automatically cleared to 0 .
An interrupt enable flag (IP××x) is provided for each interrupt request flag. If the flag is 1 , an interrupt is enabled. If it is 0 , the interrupt is disabled.
(2) EI/DI instruction

The EI/DI instruction is used to determine whether an accepted interrupt is to be executed.
If the El instruction is executed, the interrupt enable flag (INTE) for enabling interrupt reception is set. Since the INTE flag is not registered in the register file, flag status cannot be checked by instructions.
The DI instruction clears the INTE flag to 0 and disables all interrupts.
At reset the INTE flag is cleared to 0 and all interrupts are disabled.

Table 17-2 Interrupt Request Flag and Interrupt Enable Flag

Interrupt request flag	Signal for setting the interrupt request flag	Interrupt enable flag
IRQ	Set by edge detection of an INT pin input signal. A detection edge is selected by IEGMD0 or IEGMD1.	IP
IRQTM	Set by a match signal from timer.	IPTM
IRQSIO	Set by a serial data transmission end signal from the serial interface.	IPSIO

18. STANDBY FUNCTION

18.1 OVERVIEW OF THE STANDBY FUNCTION

The μ PD17132 can reduce its current by using the standby function. The standby function supports STOP and HALT modes.

In the STOP mode, the system clock is stopped and the CPU current is reduced to almost only a leak current. This mode is useful in retaining data memory contents without operating the CPU.

In the HALT mode, the oscillation of the system clock continues. However, the system clock is not supplied to the CPU, stopping CPU operation. In this mode, current reduction is less than that in the STOP mode. However, since the system clock is oscillating, operation can be started immediately after the HALT mode is released. In both STOP and HALT modes, the statuses of the data memory, registers, and output latches of the output port used immediately before the standby mode is set are maintained (except STOP 0000B). Therefore, in order to lower consumption current for the entire system, input/output port statuses should be set beforehand.

Table 18-1 Standby Mode Status

Note When STOP 0000B is executed, all pins are set to input port mode even if the pins are used in dual-function mode.

Cautions 1. Always specify a NOP instruction immediately before STOP and HALT instructions.

2. When an interrupt request flag and the corresponding interrupt enable flag are both set, and the associated interrupt is specified as the standby mode release condition, the system does not enter the standby mode.

18.2 HALT MODE

18.2.1 Setting HALT Mode

Executing a HALT instruction sets HALT mode.
Operand b3b2b1bo of the HALT instruction indicates the HALT mode release conditions.

Table 18-2 HALT Mode Release Conditions

Format: HALT b3b2b1boB

Bit	HALT mode release conditionsNote 1
b_{3}	When this bit is 1, release by IRQ×××× is permitted.Notes 2, 4
b_{2}	Fixed at 0
b_{1}	When this bit is 1, forced release by IRQTM is permitted.Notes 3, 4
b_{0}	Fixed at 0

Notes 1. When HALT 0000B is specified, HALT mode can be released only by reset ($\overline{\text { RESET }}$ input or power-on/ power-down reset).
2. $\mathrm{IP} \times \times \times$ must be 1 .
3. HALT mode is released regardless of the IPTM status.
4. If a HALT instruction is executed when $\operatorname{IRQ} \times \times \times=1$, the HALT instruction is ignored (treated as a NOP instruction), and HALT mode is not set.

18.2.2 Starting Address After HALT Mode is Released

The starting address depends on the release conditions and interrupt enable conditions.

Table 18-3 Starting Address After HALT Mode Is Released

Release condition	Starting address after release
ResetNote 1	Address 0
IRQ $\times \times \times$ Note 2	For DI, address subsequent to the HALT instruction
	For EI, interrupt vector (When more than one IRQ $\times \times \times$ is set, the interrupt vector having the highest priority)

Notes 1. RESET input and power-on/power-down reset are valid.
2. Except when forced release is made with IRQTM, IP $\times \times \times$ must be 1 .

18.3 STOP MODE

18.3.1 Setting STOP Mode

Executing a STOP instruction results in STOP mode being set.
Operand b3b2b1bo of the STOP instruction indicates the STOP mode release conditions.

Table 18-4 STOP Mode Release Conditions

Format: STOP b3b2b1boB

Bit	STOP mode release conditionNote 1
$\mathrm{~b}_{3}$	When this bit is 1, release by IRQ $\times \times \times$ is permitted.Notes 2,3
b_{2}	Fixed at 0
$\mathrm{~b}_{1}$	Fixed at 0
$\mathrm{~b}_{0}$	Fixed at 0

Notes 1. When STOP 0000B is specified, STOP mode can be released only with reset ($\overline{R E S E T}$ input or power-on/power-down reset). When STOP 0000B is executed, the microcomputer is initialized to the state existing immediately after the reset.
2. IP $\times \times \times$ must be 1. STOP mode cannot be released with IRQTM.
3. If the STOP instruction is executed when $I R Q \times \times \times=1$, the STOP instruction is ignored (treated as a NOP instruction), and STOP mode is not set.

18.3.2 Starting Address After STOP Mode Is Released

The starting address depends on the release conditions and interrupt enable conditions.

Table 18-5 Starting Address After STOP Mode is Released

Release condition	Starting address after release
ResetNote 1	Address 0
$\operatorname{IRQ} \times \times \times$ Note 2	For DI, address subsequent to the STOP instruction
	For El, interrupt vector (When more than one IRQ $\times \times \times$ is set, the interrupt vector having the highest priority)

Notes 1. $\overline{R E S E T}$ input and power-on/power-down reset are valid.
2. IP $\times \times \times$ must be 1. STOP mode cannot be released with IRQTM.

19. RESET

This product provides three reset functions:
(1) Reset by RESET input
(2) Power-on/power-down reset at power-on or power voltage drop
(3) Address stack overflow or underflow reset

19.1 RESET FUNCTIONS

The reset functions are used to initialize device operations. The initialized hardware depends on the reset type. See Table 19-1 for reset functions.

Table 19-1 Hardware Statuses after Reset

Hardware		- $\overline{\operatorname{RESET}}$ input during operation - Built-in power-on/ power-down reset during operation	- $\overline{\text { RESET input in the }}$ standby mode - Built-in power-on/ power-down reset in the standby mode	- Stack overflow or underflow
Program counter		0000H	0000H	0000H
Port	Input/output	Input	Input	Input
	Output latch	0	0	Undefined
General-purpose data memory	Other than DBF	Undefined	Statuses before reset are retained	Undefined
	DBF	Undefined	Undefined	Undefined
System register	Other than WR	0	0	0
	WR	Undefined	Statuses before reset are retained	Undefined
Control register		SP $=5 \mathrm{H}, \mathrm{IRQTM}=1$, TMEN $=1$, CMPVREF3 $=1$, CMPRSLT $=1$, and INT indicate the current status of the INT pin. The others are 0. See Fig. 21-1.		SP = 5H and INT indicate the current status of the INT pin. The others retain their statuses before reset.
Timer	Count register	OOH	OOH	Undefined
	Modulo register	FFH	FFH	FFH
Serial interface shift register (SIOSFR)		Undefined	Statuses before reset are retained	Undefined

Fig. 19-1 Reset Block Configuration

19.2 RESETTING

Operation when reset is caused by $\overline{\text { RESET }}$ input is shown in Fig. 19-2.
If the $\overline{\operatorname{RESET}}$ pin is set from low to high, system clock generation starts and an oscillation stability wait occurs with the timer. Program execution starts from address 0000 H .

If power-on reset is used, the reset signals shown in Fig. 19-2 are internally generated. Operation is the same as that when reset is caused by RESET input.

At stack overflow and underflow reset, oscillation stability wait time (WAIT a) does not occur. Operation starts from address 0000 H after initial statuses are internally set.

Fig. 19-2 Resetting

Note This is oscillation stability wait time. Operating mode is set when the timer counts system clocks $256 \times$ 256 times (approx. 32 ms at $\mathrm{fcc}=2 \mathrm{MHz}$).

19.3 POWER-ON/POWER-DOWN RESET FUNCTION

The $\mu \mathrm{PD} 17132$ is provided with two reset functions to prevent malfunctions from occurring in the microcontroller. They are the power-on reset function and power-down reset function. The power-on reset function resets the microcontroller when it detects that power was turned on. The power-down reset function resets the microcontroller when it detects drops in the power voltage.

These functions are implemented by the power-voltage monitoring circuit whose operating voltage has a different range than the logic circuits in the microcontroller and the oscillation circuit (which stops oscillation at reset to put the microcontroller in a temporary stop state). Conditions required to enable these functions and their operations will be described next.

Caution When designing an application circuit which requires high reliability, do not design a reset function which depends only on a built-in power-on/power-down reset function. Be sure to design a circuit to which an external $\overline{\text { RESET }}$ signal can be input.

19.3.1 Conditions Required to Enable the Power-On Reset Function

This function is effective when used together with the power-down reset function.
The following conditions are required to validate the power-on reset function:
(1) The power voltage must be 4.5 to 5.5 V during normal operation, including the standby state.
(2) The power-down reset function must be enabled during normal operation, including the standby state.
(3) The power voltage must rise from 0 V to the specified voltage.
(4) The time it takes for the power voltage to rise from 0 to 2.7 V must be long enough for stable oscillation to be counted in the timer. This takes about 32 ms with fcc being 2 MHz , which is equivalent to 256×256 pulses of the system clock.

Cautions 1. If the above conditions are not satisfied, the power-on reset function will not operate effectively. In this case, an external reset circuit needs to be added.
2. In the standby state, even if the power-down reset function operates normally, generalpurpose data memory (except for DBF) retains data up to $\mathrm{VDD}_{\mathrm{DD}}=2.7 \mathrm{~V}$. If, however, data is changed due to an external error, the data in memory is not guaranteed.

19.3.2 Description and Operation of the Power-On Reset Function

The power-on reset function resets the microcontroller when it detects that power was turned on in the hardware, regardless of the software state.

The power-on reset circuit operates under a lower voltage than the other internal circuits in the μ PD17132. It initializes the microcontroller regardless whether the oscillation circuit is operating. When the reset operation is terminated, the timer counts the number of oscillation pulses sent from the oscillator until it reaches the specified value. Within this period, oscillation becomes stable and the power voltage applied to the microcontroller enters the range ($\mathrm{VDD}=2.7$ to 5.5 V) in which the microcontroller is guaranteed to operate.

When this period elapses, the microcontroller enters normal operation mode. Fig. 19-3 shows an example of the power-on reset operation.

Operation of the power-on reset circuit

(1) This circuit always monitors the voltage applied to the VDD pin.
(2) This circuit resetsNote the microcontroller until power reaches a particular voltage (typically 1.5 V), regardless whether the oscillation circuit is operating.
(3) This circuit stops oscillation during the reset operation.
(4) When reset is terminated, the timer counts oscillation pulses. The microcontroller waits until oscillation becomes stable and the power voltage becomes $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ or higher.

Note The power-on reset circuit resets the microcontroller when the power voltage reaches the voltage at which the internal circuit can operate, namely an internal reset signal can be accepted.

Fig. 19-3 Example of the Power-On Reset Operation

Notes 1. During the operation-undefined period, not all of the operations specified for the μ PD17132 are guaranteed. The power-on reset operation is guaranteed in this period.
2. The operation-guaranteed period refers to the time in which all the operations specified for the μ PD17132 are guaranteed.
3. An operation stop state refers to the state in which all of the functions of the microcontroller are stopped.

19.3.3 Condition Required for Use of the Power-Down Reset Function

The power-down reset function can be enabled or disabled using software. The following condition is required to use this function:

- The power voltage must be 4.5 to 5.5 V during normal operation, including the standby state.

Caution When the microcontroller is used with a power voltage of 2.7 to 4.5 V , add an external reset circuit instead of using the internal power-down reset circuit. If the internal power-down reset circuit is used with a power voltage of 2.7 to 4.5 V , reset operation may not terminate.

19.3.4 Description and Operation of the Power-Down Reset Function

This function is enabled by setting the power-down reset enable flag (PDRESEN) using software.
When this function detects a power voltage drop, it issues the reset signal to the microcontroller. It then initializes the microcontroller. Stopping oscillation during reset prevents the power voltage in the microcontroller from fluctuating out of control. When the specified power voltage recovers and the power-down reset operation is terminated, the microcontroller waits the time required for stable oscillation using the timer. The microcontroller then enters normal operation (starts from the top of memory).

Fig. 19-4 shows an example of the power-down operation. Fig. 19-5 shows an example of reset operation during the period from power-down reset to power recovery.

Operation of the power-down reset circuit

(1) This circuit always monitors the voltage applied to the VDD pin.
(2) When this circuit detects a power voltage drop, it issues a reset signal to the other parts of the microcontroller. It continues to send this reset signal until the power voltage recovers or all the functions in the microcontroller stop.
(3) This circuit stops oscillation during the reset operation to prevent software crashes. When the power voltage recovers to the low-voltage detection level (typically 3.5 V, 4.5 V maximum) before the power-down reset function stops, the microcontroller waits the time required for stable oscillation using the timer, then enters normal operation mode.
(4) When the power voltage recovers from 0 V , the power-on reset function has priority.
(5) After the power-down reset function stops and the power voltage recovers before it reaches 0 V , the microcontroller waits using the timer until oscillation becomes stable and the power voltage (VDD) reaches 2.7 V. The microcontroller then enters normal operation mode.

Fig. 19-4 Example of the Power-Down Reset Operation

Note During the operation-undefined period, not all the operations specified for the μ PD17132 are not guaranteed. The power-down reset operation, which continues to issue a reset signal until all the functions in the microcontroller stop, is guaranteed in this period.

Fig. 19-5 Example of Reset Operation during the Period from Power-Down Reset to Power Recovery

Note During the operation-undefined period, not all the operations specified for the $\mu \mathrm{PD} 17132$ are not guaranteed. Even in this period, however, the power-down reset functions and continues to issue a reset signal until all the functions in the microcontroller stop .

20. INSTRUCTION SET

20.1 LEGEND

AR : Address register
ASR : Address stack register pointed to by the stack pointer
addr : Program memory address (11 bits, one high-order bit is always 0 .)
BANK : Bank register
CMP : Compare flag
CY : Carry flag
DBF : Data buffer
h : HALT release condition
INTEF : Interrupt enable flag
INTR : Register automatically saved in the stack when an interrupt occurs
INTSK : Interrupt stack register
IX : Index register
MP : Data memory row address pointer
MPE : Memory pointer enable flag
m : Data memory address specified by mr and mc
m_{R} : Data memory row address (high-order)
mc : Data memory column address (low-order)
$\mathrm{n} \quad$: Bit position (four bits)
n4 : Immediate data (four bits)
PC : Program counter
p : Peripheral address
рн : Peripheral address (three high-order bits)
pL : Peripheral address (four low-order bits)
$r \quad:$ General register column address
rf : Register file address
rfR : Register file address (three high-order bits)
rfc : Register file address (four low-order bits)
SP : Stack pointer
s : STOP release condition
WR : Window register
(\times) : Contents of x

20.2 LIST OF THE INSTRUCTION SET

Instruction set	Mnemonic	Operand	Operation	Instruction code			
				Op code		Operan	
Add	ADD	r, m	$(r) \leftarrow(r)+(m)$	00000	m_{R}	mc	r
		m, \#n4	$(\mathrm{m}) \leftarrow(\mathrm{m})+\mathrm{n} 4$	10000	mR_{R}	mc	n4
	ADDC	r, m	$(r) \leftarrow(r)+(m)+C Y$	00010	$\mathrm{mR}^{\text {R }}$	mc	r
		m, \#n4	$(m) \leftarrow(m)+n 4+C Y$	10010	mR_{R}	mc	n4
	INC	AR	$\mathrm{AR} \leftarrow \mathrm{AR}+1$	00111	000	1001	0000
		IX	$\mathrm{IX} \leftarrow \mathrm{IX}+1$	00111	000	1000	0000
Subtract	SUB	r, m	$(r) \leftarrow(r)-(m)$	00001	mR	mc	r
		m, \#n4	$(\mathrm{m}) \leftarrow(\mathrm{m})-\mathrm{n} 4$	10001	mR_{R}	mc	n4
	SUBC	r, m	$(r) \leftarrow(r)-(m)-C Y$	00011	mR	mc	r
		m, \#n4	$(m) \leftarrow(m)-\mathrm{n} 4-\mathrm{CY}$	10011	mR	mc	n4
Logical operation	OR	r, m	$(r) \leftarrow(\mathrm{r}) \vee(\mathrm{m})$	00110	mR_{R}	mc	r
		m, \#n4	$(\mathrm{m}) \leftarrow(\mathrm{m}) \vee \mathrm{n} 4$	10110	mR_{R}	mc	n4
	AND	r, m	$(\mathrm{r}) \leftarrow(\mathrm{r}) \wedge(\mathrm{m})$	00100	$\mathrm{mR}^{\text {r }}$	mc	r
		m, \#n4	$(m) \leftarrow(m) \wedge n 4$	10100	m_{R}	mc	n4
	XOR	r, m	$(r) \leftarrow(r) \forall(m)$	00101	mR	mc	r
		m, \#n4	$(\mathrm{m}) \leftarrow(\mathrm{m}) \forall \mathrm{n} 4$	10101	mR_{R}	mc	n4
Test	SKT	m, \#n	CMP $\leftarrow 0$, if $(\mathrm{m}) \wedge \mathrm{n}=\mathrm{n}$, then skip	11110	mR_{R}	mc	n
	SKF	m, \#n	CMP $\leftarrow 0$, if (m) $(\mathrm{n}=0$, then skip	11111	mR	mc	n
Compare	SKE	m, \#n4	$(m)-n 4$, skip if zero	01001	mR_{R}	mc	n4
	SKNE	m, \#n4	(m) - n 4 , skip if not zero	01011	mR_{R}	mc	n4
	SKGE	m, \#n4	(m) - n4, skip if not borrow	11001	mR	mc	n4
	SKLT	m, \#n4	$(m)-n 4$, skip if borrow	11011	mR	mc	n4
Rotation	RORC	r	$\longrightarrow \mathrm{CY} \rightarrow(\mathrm{r})_{\mathrm{b} 3} \rightarrow\left(\mathrm{r} \mathrm{b} 22 \rightarrow(\mathrm{r})_{\mathrm{b} 1} \rightarrow\left(\mathrm{r} \mathrm{b}_{\mathrm{b} 0}\right]\right.$	00111	000	0111	r
Transfer	LD	r, m	$(\mathrm{r}) \leftarrow(\mathrm{m})$	01000	mR	mc	r
	ST	m, r	$(\mathrm{m}) \leftarrow(\mathrm{r})$	11000	mR	mc	r
	MOV	@r, m	$\begin{aligned} & \text { if MPE }=1: \quad(M P,(r)) \leftarrow(m) \\ & \text { if MPE }=0: \quad\left(B A N K, m_{R},(r)\right) \leftarrow(m) \end{aligned}$	01010	mR	mc	r
		m, @r	$\begin{aligned} & \text { if MPE }=1: \quad(m) \leftarrow(M P,(r)) \\ & \text { if MPE }=0: \quad(m) \leftarrow\left(\text { BANK, } m_{R},(r)\right) \end{aligned}$	11010	mR	mc	r
		m, \#n4	$(\mathrm{m}) \leftarrow \mathrm{n} 4$	11101	mR	mc	n4
	MOVTNote	DBF, @AR	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{ASR} \leftarrow \mathrm{PC}, \mathrm{PC} \leftarrow \mathrm{AR}, \\ & \mathrm{DBF} \leftarrow(\mathrm{PC}), \mathrm{PC} \leftarrow \mathrm{ASR}, \mathrm{SP} \leftarrow \mathrm{SP}+1 \end{aligned}$	00111	000	0001	0000

Note Exceptionally, two instruction cycles are required to execute the MOVT instruction.

Instruction set	Mnemonic	Operand	Operation	Instruction code			
				Op code	Operand		
Transfer	PUSH	AR	$\mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{ASR} \leftarrow \mathrm{AR}$	00111	000	1101	0000
	POP	AR	$\mathrm{AR} \leftarrow \mathrm{ASR}, \mathrm{SP} \leftarrow \mathrm{SP}+1$	00111	000	1100	0000
	PEEK	WR, rf	$\mathrm{WR} \leftarrow(\mathrm{rf})$	00111	rfR	0011	rfc
	POKE	rf, WR	$(\mathrm{rf}) \leftarrow \mathrm{WR}$	00111	rfR	0010	rfc
	GET	DBF, p	DBF $\leftarrow(\mathrm{p})$	00111	рн	1011	pL
	PUT	p, DBF	$(\mathrm{p}) \leftarrow \mathrm{DBF}$	00111	рн	1010	pL
Branch	BR	addr	$\mathrm{PC}_{9-0} \leftarrow$ addr	01100	addr		
		@AR	$\mathrm{PC} \leftarrow \mathrm{AR}$	00111	000	0100	0000
Subroutine	CALL	addr	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{ASR} \leftarrow \mathrm{PC}, \\ & \mathrm{PC}_{9-0} \leftarrow \mathrm{addr} \end{aligned}$	11100	addr		
		@AR	$\begin{aligned} & \mathrm{SP} \leftarrow \mathrm{SP}-1, \mathrm{ASR} \leftarrow \mathrm{PC}, \\ & \mathrm{PC} \leftarrow \mathrm{AR} \end{aligned}$	00111	000	0101	0000
	RET		$\mathrm{PC} \leftarrow \mathrm{ASR}, \mathrm{SP} \leftarrow \mathrm{SP}+1$	00111	000	1110	0000
	RETSK		$\mathrm{PC} \leftarrow \mathrm{ASR}, \mathrm{SP} \leftarrow \mathrm{SP}+1$ and skip	00111	001	1110	0000
	RETI		$\mathrm{PC} \leftarrow \mathrm{ASR}, \mathrm{INTR} \leftarrow \mathrm{INTSK}, \mathrm{SP} \leftarrow \mathrm{SP}+1$	00111	100	1110	0000
Interrupt	El		INTEF $\leftarrow 1$	00111	000	1111	0000
	DI		INTEF $\leftarrow 0$	00111	001	1111	0000
Others	STOP	s	STOP	00111	010	1111	s
	HALT	h	HALT	00111	011	1111	h
	NOP		No operation	00111	100	1111	0000

^ 20.3 ASSEMBLER (AS17K) BUILT-IN MACRO INSTRUCTIONS

Legend

flag n : FLG symbol
$<>$: Characters enclosed in < > can be omitted.

	Mnemonic	Operand	Operation	n
	SKTn	flag 1, \cdots flag n	if (flag 1)-(flag n) = all "1", then skip	$1 \leq \mathrm{n} \leq 4$
	SKFn	flag 1, \cdots flag n	if (flag 1)-(flag n) = all "0", then skip	$1 \leq n \leq 4$
	SETn	flag 1, \cdots flag n	(flag 1)-(flag n$) \leftarrow 1$	$1 \leq \mathrm{n} \leq 4$
	CLRn	flag 1, \cdots flag n	(flag 1)-(flag n$) \leftarrow 0$	$1 \leq \mathrm{n} \leq 4$
	NOTn	flag 1, \cdots flag n	if $($ flag $n)=" 0 "$, then $($ flag $n) \leftarrow 1$ if $($ flag $n)=" 1 "$, then $($ flag $n) \leftarrow 0$	$1 \leq \mathrm{n} \leq 4$
	INITFLG	<NOT> flag 1, ... <<NOT> flag n>	if description $=$ NOT flag n , then (flag n$) \leftarrow 0$ if description $=$ flag n, then $($ flag $n) \leftarrow 1$	$1 \leq \mathrm{n} \leq 4$
	BANKn		$(\mathrm{BANK}) \leftarrow \mathrm{n}$	$\mathrm{n}=0$

21. ASSEMBLER RESERVED WORDS

21.1 MASK OPTION PSEUDO INSTRUCTIONS

To create μ PD17132 programs, it is necessary to specify whether pins that can have pull-up resistors have pullup resistors. This is done in the assembler source program using mask option pseudo instructions. To set the mask option, note that D17132.OPT file in the AS17120 (μ PD17132 device file) must be in the current directory at assembly time.

Specify mask options for the following pins:

- $\overline{\text { RESET }}$ pin
- Port 0D (P0D 3 , P0D 2, POD $\left._{1}, \mathrm{POD}_{0}\right)$
- Port 0E (P0E1, P0Eo)

21.1.1 OPTION and ENDOP Pseudo Instructions

The block from the OPTION pseudo instruction to the ENDOP pseudo instruction is defined as the option definition block.

The format for the mask option definition block is shown below. Only the three pseudo instructions listed in Table 21-1 can be described in this block.

Format:

$\frac{\text { Symbol }}{[\text { label: }]}$	Mnemonic OPTION		Operand
	\vdots		
[;comment]			
	\vdots		
	ENDOP		

21.1.2 Mask Option Definition Pseudo Instructions

Table 21-1 lists the pseudo instructions which define the mask options for each pin.

Table 21-1 Mask Option Definition Pseudo Instructions

Pin	Mask option pseudo instruction	Number of operands	Parameter name
$\overline{\text { RESET }}$	OPTRES	1	OPEN (without pull-up resistor) PULLUP (with pull-up resistor)
P0D3-P0D0	OPTP0D	4	OPEN (without pull-up resistor) PULLUP (with pull-up resistor)
$\mathrm{POE}_{1}, \mathrm{POE}_{0}$	OPTP0E	2	OPEN (without pull-up resistor) PULLUP (with pull-up resistor)

The OPTRES format is shown below. Specify the RESET mask option in the operand field.

Symbol			
	Mnemonic	Operand	Comment
OPTRES	$\overline{\text { RESET }})$		

The OPTPOD format is shown below. Specify mask options for all pins of port 0D. Specify the pins in the operand field starting at the first operand in the order $\mathrm{POD}_{3}, \mathrm{POD}_{2}, \mathrm{POD}_{1}$, then POD_{0}.

Symbol	Mnemonic	Operand	Comment
	OPTP0D		$\left(\mathrm{POD}_{3}\right),\left(\mathrm{POD}_{2}\right),\left(\mathrm{POD}_{1}\right),\left(\mathrm{POD}_{0}\right)$

The OPTP0E format is shown below. Specify mask options for all pins of port 0E. Specify the pins in the operand field starting at the first operand in the order P0E1, then P0E ${ }_{0}$.

Symbol	Mnemonic	Operand	Comment
[label:]	OPTP0E	(P0E1),(P0E0)	[;comment]

Example of describing mask options

RESET pin: Pull-up
P0D3: Open, P0D2: Open, P0D1: Pull-up, P0Do: Pull-up
P0E1: Pull-up, P0Eo: Open

Symbol	Mnemonic	Operand	Comment
; μ PD17132			
Setting mask options:	OPTION		
	OPTRES	PULLUP	
	OPTP0D	OPEN,OPEN,PULLUP,PULLUP	
	OPTP0E	PULLUP,OPEN	
	ENDOP		

21.2 RESERVED SYMBOLS

The reserved symbols defined in the μ PD17132 device file (AS17120) are listed below.

System register (SYSREG)

Symbolic name	Attribute	Value	Read/ write	
AR3	MEM	0.74 H	R	Bits 15 to 12 of the address register
AR2	MEM	0.75 H	R/W	Bits 11 to 8 of the address register
AR1	MEM	0.76 H	R/W	Bits 7 to 4 of the address register
AR0	MEM	0.77 H	R/W	Bits 3 to 0 of the address register
WR	MEM	0.78 H	R/W	Window register
BANK	MEM	$0.79 H$	R/W	Bank register
IXH	MEM	0.7 AH	R/W	Index register high
MPH	MEM	0.7 AH	R/W	Data memory row address pointer high
MPE	FLG	$0.7 A H .3$	R/W	Memory pointer enable flag
IXM	MEM	$0.7 B H$	R/W	Index register middle
MPL	MEM	$0.7 B H$	R/W	Data memory row address pointer low
IXL	MEM	$0.7 C H$	R/W	Index register low
RPH	MEM	$0.7 D H$	R/W	General register pointer high
RPL	MEM	$0.7 E H$	R/W	General register pointer low
PSW	MEM	$0.7 F H$	R/W	Program status word
BCD	FLG	$0.7 E H .0$	R/W	BCD flag
CMP	FLG	$0.7 F H .3$	R/W	Compare flag
CY	FLG	$0.7 F H .2$	R/W	Carry flag
Z	FLG	$0.7 F H .1$	R/W	Zero flag
IXE	FLG	$0.7 F H .0$	R/W	Index enable flag

Data buffer (DBF)

Symbolic name	Attribute	Value	Read/ write		
DBF3	MEM	0.0 CH	R/W	DBF bits 15 to 12	
DBF2	MEM	0.0 DH	R/W	DBF bits 11 to 8	
DBF1	MEM	$0.0 E H$	R/W	DBF bits 7 to 4	
DBF0	MEM	0.0 FH	R/W	DBF bits 3 to 0	

Port register

Symbolic name	Attribute	Value	Read/ write	Description
P0E1	FLG	0.6FH. 1	R/W	Port 0E bit 1
POEO	FLG	0.6FH.0	R/W	Port 0E bit 0
P0A3	FLG	0.70H. 3	R/W	Port 0A bit 3
P0A2	FLG	0.70H. 2	R/W	Port 0A bit 2
P0A1	FLG	0.70H. 1	R/W	Port 0A bit 1
POAO	FLG	0.70H.0	R/W	Port 0A bit 0
P0B3	FLG	0.71H. 3	R/W	Port 0B bit 3
P0B2	FLG	0.71 H .2	R/W	Port 0B bit 2
P0B1	FLG	0.71H. 1	R/W	Port 0B bit 1
POBO	FLG	0.71H.0	R/W	Port 0B bit 0
P0C3	FLG	0.72H.3	R/W	Port 0C bit 3
POC2	FLG	0.72 H .2	R/W	Port OC bit 2
P0C1	FLG	0.72H. 1	R/W	Port 0C bit 1
POCO	FLG	0.72 H .0	R/W	Port 0C bit 0
P0D3	FLG	0.73 H .3	R/W	Port OD bit 3
POD2	FLG	0.73H. 2	R/W	Port OD bit 2
POD1	FLG	0.73 H .1	R/W	Port OD bit 1
PODO	FLG	0.73H.0	R/W	Port 0D bit 0

Register file (control register)
(1/2)

Symbolic name	Attribute	Value	Read/ write	Description
SP	MEM	0.81H	R/W	Stack pointer
SIOEN	FLG	0.8AH.0	R/W	SIO enable flag
INT	FLG	0.8FH.0	R	INT pin status flag
PDRESEN	FLG	0.90H.0	R/W	Power-down reset enable flag
TMEN	FLG	0.91H. 3	R/W	Timer enable flag
TMRES	FLG	0.91H. 2	R/W	Timer reset flag
TMCK1	FLG	0.91H. 1	R/W	Timer source count pulse flag bit 1
TMCKO	FLG	0.91H.0	R/W	Timer source count pulse flag bit 0
TMOSEL	FLG	0.92H.0	R/W	POD $3 / \overline{\text { TMOUT }}$ selection flag
SIOTS	FLG	0.9AH. 3	R/W	SIO start flag
SIOHIZ	FLG	0.9AH. 2	R/W	SO pin state
SIOCK1	FLG	0.9AH. 1	R/W	Serial clock selection flag bit 1
SIOCK0	FLG	0.9AH. 0	R/w	Serial clock selection flag bit 0

Register file (control register)
(2/2)

Symbolic name	Attribute	Value	Read/ write	Description
CMPCH1	FLG	0.9 CH .1	R/W	Comparator input channel selection flag bit 1
CMPCH0	FLG	0.9 CH .0	R/W	Comparator input channel selection flag bit 0
CMPVREF3	FLG	0.9DH. 3	R/W	Comparator reference voltage selection flag bit 3
CMPVREF2	FLG	0.9DH. 2	R/W	Comparator reference voltage selection flag bit 2
CMPVREF1	FLG	0.9DH. 1	R/W	Comparator reference voltage selection flag bit 1
CMPVREF0	FLG	0.9DH. 0	R/W	Comparator reference voltage selection flag bit 0
CMPSTRT	FLG	0.9EH. 1	R/W	Comparator start flag
CMPRSLT	FLG	0.9EH. 0	R	Comparison result flag
IEGMD1	FLG	0.9FH. 1	R/W	INT pin edge detection selection flag bit 1
IEGMD0	FLG	0.9FH. 0	R/W	INT pin edge detection selection flag bit 0
P0C3IDI	FLG	0.A3H. 3	R/W	POC_{3} input port disable flag ($\mathrm{POC}_{3} / \mathrm{Cin}_{3}$ selection)
P0C2IDI	FLG	0.A3H. 2	R/W	
P0C1IDI	FLG	0.A3H. 1	R/W	P0C ${ }_{1}$ input port disable flag ($\mathrm{POC}_{1} / \mathrm{Cin}_{1}$ selection)
POCOIDI	FLG	0.A3H. 0	R/W	P0C 0 input port disable flag ($\mathrm{P} 0 \mathrm{C}_{0} / \mathrm{Cin}^{\text {a }}$ selection)
P0BGIO	FLG	0.A4H. 0	R/W	POB group input/output selection flag ($1=$ all POBs are output ports.)
IPSIO	FLG	0.AFH. 2	R/W	SIO interrupt enable flag
IPTM	FLG	0.AFH. 1	R/W	Timer interrupt enable flag
IP	FLG	0.AFH. 0	R/W	INT pin interrupt enable flag
P0EBIO1	FLG	0.B2H. 1	R/W	P0E ${ }_{1}$ input/output selection flag (1 = output port)
P0EBIOO	FLG	0.B2H. 0	R/W	P0E ${ }_{0}$ input/output selection flag ($1=$ output port)
P0DBIO3	FLG	0.B3H. 3	R/W	P0D 3 input/output selection flag ($1=$ output port)
P0DBIO2	FLG	0.B3H. 2	R/W	POD2 input/output selection flag ($1=$ output port)
P0DBIO1	FLG	0.B3H. 1	R/W	POD ${ }_{1}$ input/output selection flag ($1=$ output port)
P0DBIO0	FLG	0.B3H. 0	R/W	POD ${ }_{0}$ input/output selection flag ($1=$ output port)
P0CBIO3	FLG	0.B4H. 3	R/W	POC_{3} input/output selection flag (1 = output port)
P0CBIO2	FLG	0.B4H. 2	R/W	P0C2 input/output selection flag (1 = output port)
P0CBIO1	FLG	0.B4H. 1	R/W	POC ${ }_{1}$ input/output selection flag ($1=$ output port)
P0CBIO0	FLG	0.B4H. 0	R/W	POCo input/output selection flag (1 = output port)
P0ABIO3	FLG	0.B5H. 3	R/W	P0A ${ }_{3}$ input/output selection flag (1 = output port)
P0ABIO2	FLG	0.B5H. 2	R/W	POA2 input/output selection flag (1 = output port)
P0ABIO1	FLG	0.B5H. 1	R/W	POA ${ }_{1}$ input/output selection flag ($1=$ output port)
POABIOO	FLG	0.B5H. 0	R/W	POA ${ }_{0}$ input/output selection flag ($1=$ output port)
IRQSIO	FLG	0.BDH. 0	R/W	SIO interrupt request flag
IRQTM	FLG	0.BEH. 0	R/W	Timer interrupt request flag
IRQ	FLG	0.BFH. 0	R/W	INT pin interrupt request flag

Peripheral hardware register

Symbolic name	Attribute	Value	Read/ write	Description
SIOSFR	DAT	01 H	R/W	Peripheral address of the shift register
TMC	DAT	02 H	R	Peripheral address of the timer counter register
TMM	DAT	03 H	W	Peripheral address of the timer modulo register
AR	DAT	40 H	R/W	Peripheral address of the address register for GET, PUT, PUSH, CALL, BR, MOVT, and INC instructions

Others

Symbolic name	Attribute	Value	Description
DBF	DAT	$0 F H$	Fixed operand value for a PUT/GET/MOVT instruction
IX	DAT	01 H	Fixed operand value for an INC instruction

Fig. 21-1 Control Register Configuration (1/2)

Remark The address enclosed in parentheses apply when the AS17K assembler is used.
The names of all the flags in the control registers are assembler reserved words saved in the device file. Using these reserved words is useful in programming.

Fig. 21-1 Control Register Configuration (2/2)

8	9	A	B	C	D	E	F
		$\begin{array}{l\|l\|l\|l} & & & S \\ & & & 1 \\ & & & O \\ 0 & 0 & 0 & E \\ & & & \text { N } \end{array}$					
		0 0 0 0 					
		R/W					R
		$\begin{array}{l:l:l:l} \hline \text { S } & S & S & S \\ 1 & 1 & 1 & 1 \\ O & O & O & O \\ \mathrm{~T} & \mathrm{H} & \mathrm{C} & \mathrm{C} \\ \mathrm{~S} & 1 & \mathrm{~K} & \mathrm{~K} \\ & Z & 1 & 0 \end{array}$		$\begin{array}{l:l\|l\|l} & & \mathrm{C} & \mathrm{C} \\ & & \mathrm{M} & \mathrm{M} \\ & & \mathrm{P} & \mathrm{P} \\ 0 & 0 & \mathrm{C} & \mathrm{C} \\ & & \mathrm{H} & \mathrm{H} \\ & & 1 & 0 \\ & & & \end{array}$	C C C C M M M M P P P P V V V V R R R R E E E F E F F F		I I E E G G 0 0 M M D D 1 0
		$\begin{array}{l:l:l:l}0 & 0 & 0 & 0\end{array}$		$\begin{array}{lllll}0 & 0 & 0 & 0\end{array}$	1 0 0 	0 0 0 1 	0 0 0 0
		R/W		R/W	R/W	R/W R	R/W
							0 0 0 0
							R/W
						$\begin{array}{l\|l\|l\|l} \hline & & & 1 \\ & & & R \\ & & & R \\ \hline 0 & 0 & 0 & \mathrm{Q} \\ \hline & & & \\ \hline \end{array}$	
			!		(1)0 0 0 0 O 0	0 000001	0 0 0 0
					R/W	R/W	R/W

Note The INT flag depends on the status of the INT pin.

22. ELECTRICAL CHARACTERISTICS (FOR BOTH THE μ PD17132 AND μ PD17132(A))

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions		Rated value	Unit
Supply voltage	VdD			-0.3 to +7.0	V
Input voltage	V	P0A, P0B, P0C, P0E ${ }_{1}$ Note, INT, RESET		-0.3 to $\mathrm{V}_{\mathrm{dD}}+0.3$	V
		P0D, P0E0	When a built-in pull-up resistor is connected.	-0.3 to $\mathrm{VdD}+0.3$	V
			When a built-in pull-up resistor is not connected.	-0.3 to +10.0	
Output voltage	Vo	P0A, P0B, P0C, P0E, Note		-0.3 to $V_{\text {dD }}+0.3$	V
		P0D, P0E0	When a built-in pull-up resistor is connected.	-0.3 to V dD +0.3	V
			When a built-in pull-up resistor is not connected.	-0.3 to +10.0	
High-level output current	Іон	Each of P0A, POB, and POC		-5	mA
		Total of all output pins		-20	mA
Low-level output current	Iot	Each of P0A, P0B, and P0C		5	mA
		Each of POD and P0E		30	mA
		Total of POA, POB, and P0C output pins		20	mA
		Total of POD and POE output pins		60	mA
		Total of all output pins		80	mA
Operating ambient temperature	TA			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$
Allowable dissipation	Pd	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	Plastic shrink DIP	155	mW
			Plastic SOP	95	mW

Note The POE_{1} pin is an N-ch open-drain I/O pin. But it cannot be used as an intermediate-withstand-voltage port.

Caution Absolute maximum ratings are rated values beyond which physical damage will be caused to the product; if the rated value of any of the parameters in the above table is exceeded, even momentarily, the quality of the product may deteriorate. Always use the product within its rated values.

RECOMMENDED POWER VOLTAGE RANGE (TA $=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Conditions	Min.	Typ.	Max.
Unit				
CPUNote		2.7		5.5
Power-on/power-down reset circuit	Rising time of the power voltage (VDD $0 \rightarrow 2.7 \mathrm{~V}):$ 4096 tcy or less (fcc $=400 \mathrm{kHz}$ to 2.4 MHz$)$	4.5	V	

Note Excluding the power-on/power-down reset circuit

Remark tcy $=16 / f \mathrm{fcc}$ (fcc: frequency of system clock oscillator)

System clock oscillator characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
System clock oscillation frequency	$f \mathrm{fc}$	$\mathrm{V} \mathrm{DD}=4.5$ to 5.5 V , Rosc $=10 \mathrm{k} \Omega$	1.6	2	2.4	MHz
		$\mathrm{V} \mathrm{DD}=4.5$ to 5.5 V , Rosc $=24 \mathrm{k} \Omega$	0.8	1	1.2	MHz
		$\mathrm{V}_{\mathrm{DD}}=2.7$ to 5.5 V , Rosc $=24 \mathrm{k} \Omega$	0.6	1	1.2	MHz
		$\mathrm{V} \mathrm{DD}=2.7$ to 3.3 V , Rosc $=51 \mathrm{k} \Omega$	400	500	600	kHz

Caution The tolerance of a resistance is not considered in the conditions.

DC CHARACTERISTICS ($\mathrm{VDD}_{\mathrm{DD}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+8{ }^{\circ}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions			Min.	Typ.	Max.	Unit
High-level input voltage	$\mathrm{V}_{\mathbf{H} 1}$	P0A, P0B, P0C, P0D, P0E			0.7 V dD		Vod	V
	$\mathrm{V}_{\text {HH2 }}$	$\overline{\text { RESET }}$, $\overline{\text { SCK }}$, SI, INT			0.8 V dD		Vod	V
Low-level input voltage	VIL1	P0A, POB, POC			0		0.3VDD	V
	VIL2	POD, POE, $\overline{R E S E T}, \overline{\text { SCK, SI, INT }}$			0		0.2 V dD	V
High-level output voltage	V OH	POA, POB, POC		$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{I} \mathrm{OH}=-1.0 \mathrm{~mA} \end{aligned}$	$V_{D D}-0.3$			V
				$\begin{aligned} & \mathrm{V} D \mathrm{DD}=2.7 \text { to } 4.5 \mathrm{~V} \\ & \mathrm{IOH}=-0.5 \mathrm{~mA} \end{aligned}$	VDD -0.3			V
Low-level output voltage	Vol1	POA, POB, POC, POD, POE		$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{loL}=1.0 \mathrm{~mA} \end{aligned}$			0.3	V
				$\begin{aligned} & \mathrm{V} D \mathrm{DD}=2.7 \text { to } 4.5 \mathrm{~V} \\ & \mathrm{loL}=0.5 \mathrm{~mA} \end{aligned}$			0.3	V
	Vol2	P0D, P0E		$\begin{aligned} & \mathrm{VDD}=4.5 \text { to } 5.5 \mathrm{~V} \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$			1.0	V
				$\begin{aligned} & \mathrm{VDD}=2.7 \text { to } 4.5 \mathrm{~V} \\ & \mathrm{loL}=15 \mathrm{~mA} \end{aligned}$			2.0	V
High-level input leakage current	ІІІн	POA, POB, POC, POD, POE$V_{I N}=V_{D D}$					3	$\mu \mathrm{A}$
Low-level input leakage current	ILIL	POA, POB, POC, POD, POE$\mathrm{V} \mathbb{N}=0 \mathrm{~V}$					-3	$\mu \mathrm{A}$
High-level output leakage current	ILOH	POA, POB, POC, POD, POE Vout $=$ VDD					3	$\mu \mathrm{A}$
Low-level output leakage current	ILOL	POA, POB, POC, POD, POE$\text { Vout = } 0 \mathrm{~V}$					-3	$\mu \mathrm{A}$
Built-in pull-up resistor	Rpull	P0D, P0E, RESET			50	100	200	k Ω
Power supply currentNote	IdD1	Operation mode	$\mathrm{fcc}=2.0 \mathrm{MHz}$	$V_{\text {dD }}=5 \mathrm{~V} \pm 10$ \%		0.9	2.0	mA
				$V_{\text {dD }}=3 \mathrm{~V} \pm 10 \%$		0.5	1.5	mA
			$\mathrm{fcc}=1.0 \mathrm{MHz}$	$V_{\text {dD }}=5 \mathrm{~V} \pm 10 \%$		0.5	1.0	mA
				$V_{\text {dD }}=3 \mathrm{~V} \pm 10 \%$		0.25	0.75	mA
			$\mathrm{fcc}=500 \mathrm{kHz}$	$V_{\text {dD }}=5 \mathrm{~V} \pm 10 \%$		250	500	$\mu \mathrm{A}$
				$V_{\text {dD }}=3 \mathrm{~V} \pm 10 \%$		125	375	$\mu \mathrm{A}$
	IdD2	HALT mode	$\mathrm{fcc}=2.0 \mathrm{MHz}$	$V \mathrm{DD}=5 \mathrm{~V} \pm 10 \%$		0.65	1.5	mA
				$V_{D D}=3 \mathrm{~V} \pm 10 \%$		0.3	1.0	mA
			$\mathrm{fcc}=1.0 \mathrm{MHz}$	$V_{D D}=5 \mathrm{~V} \pm 10 \%$		0.4	0.8	mA
				$V_{D D}=3 \mathrm{~V} \pm 10 \%$		0.15	0.5	mA
			$\mathrm{fcc}=500 \mathrm{kHz}$	$V_{\text {dD }}=5 \mathrm{~V} \pm 10 \%$		200	300	$\mu \mathrm{A}$
				$V_{D D}=3 \mathrm{~V} \pm 10 \%$		100	200	$\mu \mathrm{A}$
	IDD3	STOP mode	$V_{D D}=5 \mathrm{~V} \pm 10 \%$			3.0	10	$\mu \mathrm{A}$
			$V_{D D}=3 \mathrm{~V} \pm 10$ \%			2.0	10	$\mu \mathrm{A}$

Note This current excludes the current which flows through the comparator or built-in pull-up resistor.

AC CHARACTERISTICS (VDD $=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
CPU clock cycle time (instruction execution time)	tcy		6.6		41	$\mu \mathrm{S}$
INT high/low level width (external interrupt input)	tinth, tintL	$\mathrm{V}_{\text {DD }}=4.5$ to 5.5 V	10			$\mu \mathrm{s}$
			50			$\mu \mathrm{S}$
$\overline{\text { RESET }}$ low level width	trsL	$V_{\text {DD }}=4.5$ to 5.5 V	10			$\mu \mathrm{s}$
			50			$\mu \mathrm{s}$

Remark tcy $=16 / \mathrm{fcc}$ (fcc: frequency of system clock oscillator)

Interrupt input timing

$\overline{\text { RESET input timing }}$

SERIAL TRANSFER OPERATION (VDD $=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Remark $R L$ and $C\llcorner$ are a resistive load and a capacitive load for the output line.

Serial transfer timing

POWER-ON/POWER-DOWN RESET CIRCUIT CHARACTERISTICS (TA $=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Power voltage rise time when power-on reset is valid	tPOR	VDD $=0 \rightarrow 2.7$ V Rising must start at 0 V.			4096 tcY	$\mu \mathrm{s}$
Voltage for power-down reset circuit	VPDR	When PDRESEN $=1$	3.5	4.5	V	

COMPARATOR CHARACTERISTICS (VDD $=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Comparator input voltage range	Vain	Cino-Cin $_{3}, \mathrm{~V}_{\text {ref }}$	0		$\mathrm{~V}_{\mathrm{DD}}$	V
ResolutionNote 1		V VD $=4.5$ to 5.5 V		10	50	mV
				100	mV	
Response time		Note 2			2 tcy	$\mu \mathrm{s}$

Notes 1. Also applied to the condition that the internal reference voltage is used.
2. Time required for storing the comparison result in CMPRSLT after execution of the comparator start instruction (execution time not included). ($16 \mu \mathrm{~s}$, when $\mathrm{fcc}=2 \mathrm{MHz}$)
23. CHARACTERISTIC CURVES (FOR REFERENCE)
fcc vs $\mathrm{R}\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

fcc $v s V_{D o}\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Idd vs Vdd

Caution Absolute maximum rating of the output current is $\mathbf{- 5} \mathbf{m A}$ per pin.

Caution Absolute maximum rating of the output current is 5 mA per pin.

Caution Absolute maximum rating of the output current is $\mathbf{3 0} \mathbf{m A}$ per pin.

Caution Absolute maximum rating of the output current is 30 mA per pin. The input voltage or output voltage of the POE_{1} pin must not be higher than $\mathrm{V} D \mathrm{~d}+0.3 \mathrm{~V}$.

24. PACKAGE DRAWINGS

PACKAGE DRAWINGS OF MASS-PRODUCED PRODUCTS (1/2)

24 PIN PLASTIC SHRINK DIP (300 mil)

NOTE

1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	23.12 MAX.	0.911 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ± 0.10	$0.020_{-0.005}^{+0.004}$
F	0.85 MIN.	0.033 MIN.
G	3.2 ± 0.3	0.126 ± 0.012
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	$0.170 \mathrm{MAX}$.
J	5.08 MAX.	0.200 MAX.
K	7.62 (T.P.)	0.300 (T.P.)
L	6.5	0.256
M	$0.25_{-0.05}^{+0.10}$	$0.010_{-0.003}^{+0.004}$
N	0.17	0.007
R	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
		S24C-70-300B-1

Caution The ES is different from the corresponding mass-produced products in shape and material. See "ES PACKAGE DRAWINGS (1/2)."

PACKAGE DRAWINGS OF MASS-PRODUCED PRODUCTS (2/2)

24 PIN PLASTIC SOP (375 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition

ITEM	MILLIMETERS	INCHES
A	15.54 MAX.	0.612 MAX.
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.40_{-0.05}^{+0.10}$	$0.016_{-0.003}^{+0.004}$
E	0.1 ± 0.1	0.004 ± 0.004
F	2.9 MAX.	0.115 MAX.
G	2.50	0.098
H	10.3 ± 0.3	$0.406_{-0.013}^{+0.012}$
I	7.2	0.283
J	1.6	0.063
K	$0.15_{-0.05}^{+0.10}$	$0.006_{-0.002}^{+0.004}$
L	0.8 ± 0.2	$0.031_{-0.008}^{+0.009}$
M	0.12	0.005
N	0.15	0.006
P	$3^{\circ+7_{-3^{\circ}}^{\circ}}$	$3^{\circ}{ }_{-3^{\circ}}$
		P24GM-50-375B-3

Caution The ES is different from the corresponding mass-produced products in shape and material. See "ES PACKAGE DRAWINGS (2/2)."

24 PIN CERAMIC SHRINK DIP (300 mil) (FOR ES)

NOTES

1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	24.0 MAX.	0.945 MAX.
B	2.3 MAX.	0.091 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	0.46 ± 0.05	0.018 ± 0.002
F	0.8 MIN.	0.031 MIN.
G	3.0 ± 1.0	0.118 ± 0.04
H	1.0 MIN.	0.039 MIN.
I	2.7	0.106
J	4.3 MAX.	0.170 MAX.
K	7.62 (T.P.)	0.300 (T.P.)
L	7.5	0.295
M	0.25 ± 0.05	$0.010_{-0.003}^{+0.002}$
N	0.25	0.01
R	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
		P24D-70-300B1-1

ES PACKAGE DRAWINGS (2/2)
$\star \quad$ 25. COMPARISON OF FUNCTIONS OF μ PD17120 SUB-SERIES

Product Item			$\mu \mathrm{PD} 17120$	$\mu \mathrm{PD} 17121$	$\mu \mathrm{PD} 17132$	$\mu \mathrm{PD} 17133$
ROM			1.5K bytes		2 K bytes	
RAM			64×4 bits		111×4 bits	
Stack			Five levels of address stack One level of interrupt stack			
Instruction execution time (clock, operating voltage)			$\begin{aligned} & 8 \mu \mathrm{~s} \\ & (2 \mathrm{MHz}, 2.7 \text { to } 5.5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 2 \mu \mathrm{~s} \\ & (8 \mathrm{MHz}, 4.5 \text { to } 5.5 \mathrm{~V}) \\ & 4 \mu \mathrm{~s} \\ & (4 \mathrm{MHz}, 2.7 \text { to } 5.5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 8 \mu \mathrm{~s} \\ & (2 \mathrm{MHz}, 2.7 \text { to } 5.5 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & 2 \mu \mathrm{~s} \\ & (8 \mathrm{MHz}, 4.5 \text { to } 5.5 \mathrm{~V}) \\ & 4 \mu \mathrm{~s} \\ & (4 \mathrm{MHz}, 2.7 \text { to } 5.5 \mathrm{~V}) \end{aligned}$
CMOS I/O			12 (P0A, P0B, P0C)			
1/O	Sense input		1 (INT)			
	N-ch open-drain I/O		6 (POD, POE Withstand voltage: 9 V) POD pull-up resistor: Mask option POE pull-up resistor: Mask option		$\begin{aligned} & 6\binom{\text { POD, P0E }{ }_{0} \text { Withstand voltage: } 9 \mathrm{~V}}{\text { POE } 1 \text { Withstand voltage: } \mathrm{VDD}} \\ & \text { POD pull-up resistor: Mask option } \\ & \text { POE pull-up resistor: Mask option } \end{aligned}$	
Built-in pull-up resistance			100 ký TYP.			
Comparator (operating voltage)			None		$\begin{aligned} & 4 \\ & (\mathrm{VDD}=2.7 \text { to } 5.5 \mathrm{~V}) \end{aligned}$	
Reference voltage pin			-		$\mathrm{V}_{\text {ref }}=\left(\mathrm{V}_{\text {ref }}=0 \mathrm{~V}\right.$ to $\left.\mathrm{V}_{\text {DD }}\right)$	
Timer (8-bit)			1 (Timer output: TMOUT)			
Interrupt		External	1			
		Internal	2 (TM, SIO)			
SIO			1 (Clock-synchronous three-wire)			
Stand-by function			HALT, STOP			
Oscillation settling time			256×256 count			
Power-on/power-down reset circuit			Built-in (Can be used in an application circuit where V_{DD} is 5 V ± 10 \%)	Built-in (Can be used in an application circuit where V_{D} is $5 \mathrm{~V} \pm 10$ $\%, \mathrm{fx}$ is 400 kHz to 4 MHz)	Built-in (Can be used in an application circuit where V_{dD} is 5 V ± 10 \%)	Built-in (Can be used in an application circuit where V_{DD} is $5 \mathrm{~V} \pm 10$ $\%, \mathrm{fx}$ is 400 kHz to 4 MHz)
Package			24-pin plastic shrink DIP (300 mil) 24-pin plastic SOP (375 mil)			
One-time PROM			$\mu \mathrm{PD} 17 \mathrm{P} 132$	μ PD17P133	$\mu \mathrm{PD} 17 \mathrm{P} 132$	$\mu \mathrm{PD} 17 \mathrm{P} 133$

26. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD17132.
For details of the recommended soldering conditions, refer to our document SMD Surface Mount Technology Manual (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 26-1 Soldering Conditions for Surface-Mount Devices

```
\muPD17132GT- }\times\times\times\mathrm{ : 24-pin plastic SOP (375 mil)
\muPD17132GT(A)-xxx: 24-pin plastic SOP (375 mil)
```

Soldering process	Soldering conditions	Symbol
Infrared ray reflow	Peak package's surface temperature: $235{ }^{\circ} \mathrm{C}$ Reflow time: 30 seconds or less (at $210^{\circ} \mathrm{C}$ or more) Maximum allowable number of reflow processes: 2 Exposure limit: 7 daysNote (20 hours of pre-baking is required at $125^{\circ} \mathrm{C}$ afterward.) <Caution> Non-heat-resistant trays, such as magazine and taping trays, cannot be baked before unpacking.	IR35-207-2
VPS	Peak package's surface temperature: $215{ }^{\circ} \mathrm{C}$ Reflow time: 40 seconds or less (at $200{ }^{\circ} \mathrm{C}$ or more) Maximum allowable number of reflow processes: 2 Exposure limit: 7 daysNote (20 hours of pre-baking is required at $125^{\circ} \mathrm{C}$ afterward.) <Caution> Non-heat-resistant trays, such as magazine and taping trays, cannot be baked before unpacking.	VP15-207-2
Wave soldering	Temperature in the soldering vessel: $260^{\circ} \mathrm{C}$ or less Soldering time: 10 seconds or less Number of soldering process: 1 Preheating temperature: $120^{\circ} \mathrm{C}$ max. (measured on the package surface) Exposure limit: 7 daysNote (20 hours of pre-baking is required at $125^{\circ} \mathrm{C}$ afterward.)	WS60-207-1
Partial heating method	Terminal temperature: $300^{\circ} \mathrm{C}$ or less Flow time: 3 seconds or less (for each side of device)	-

Note Exposure limit before soldering after dry-pack package is opened.
Storage conditions: Temperature of $25^{\circ} \mathrm{C}$ and maximum relative humidity at 65% or less

Caution Do not apply more than a single process at once, except for "Partial heating method."

Table 26-2 Soldering Conditions for Through Hole Mount Devices
μ PD17132CS- $\times x \times$: \quad 24-pin plastic shrink DIP (300 mil)
μ PD17132CS(A)-××x: 24-pin plastic shrink DIP (300 mil)

Soldering process	Soldering conditions
Wave soldering (only for terminals)	Solder temperature: $260^{\circ} \mathrm{C}$ or less Flow time: 10 seconds or less
Partial heating method	Terminal temperature: $300^{\circ} \mathrm{C}$ or less Flow time: 3 seconds or less (for each terminal)

Caution In wave soldering, apply solder only to the terminals. Care must be taken that jet solder does not come in contact with the main body of the package.

APPENDIX DEVELOPMENT TOOLS

The following support tools are available for developing programs for the μ PD17132.

Hardware

Name	Description
In-circuit emulator $\left[\begin{array}{l}\text { IE-17K } \\ \text { IE-17K-ETNote 1 } \\ \text { EMU-17KNote 2 }\end{array}\right]$	The IE-17K, IE-17K-ET, and EMU-17K are in-circuit emulators applicable to the 17K series. The IE-17K and IE-17K-ET are connected to the PC-9800 series (host machine) or IBM PC/AT TM through the RS-232-C interface. The EMU-17K is inserted into the extension slot of the PC-9800 series (host machine). Use the system evaluation board (SE board) corresponding to each product together with one of these in-circuit emulators. SIMPLEHOSTM, a man machine interface, implements an advanced debug environment. The EMU-17K also enables user to check the contents of the data memory in real time.
SE board (SE-17120)	The SE-17120 is an SE board for the μ PD17120 sub-series. It is used solely for evaluating the system. It is also used for debugging in combination with the in-circuit emulator.
Emulation probe (EP-17120CS)	The EP-17120CS is an emulation probe for the μ PD17120 sub-series. Use this emulation probe to connect the SE board to target system.
$\left.\begin{array}{l}\text { PROM programmer } \\ \text { AF-9703Note 3 } \\ \text { AF-9704Note } 3 \\ \text { AF-9705Note } 3 \\ \text { AF-9706Note 3 }\end{array}\right]$	The AF-9703, AF-9704, AF-9705, and AF-9706 are PROM programmers for the μ PD17P132. Use one of these PROM programmers with the program adapter, AF-9808M, to write a program into the μ PD17P132.
Program adapter (AF-9808MNote 3)	The AF-9808M is a socket unit for the μ PD17P132CS or μ PD17P132GT. It is used with the AF-9703, AF-9704, AF-9705, or AF-9706.

Notes 1. Low-end model, operating on an external power supply
2. The EMU-17K is a product of I.C Corporation. Contact I.C Corporation. (Tokyo, 03-3733-1163) for details.
3. The AF-9703, AF-9704, AF-9705, AF-9706, and AF-9808M are products of Ando Electric Co., Ltd. Contact Ando Electric Co., Ltd. (Tokyo, 03-3733-1151) for details.

Software

Name	Description	Host machine	OS		Distribution media	Part number
17K series assembler (AS17K)	The AS17K is an assembler applicable to the 17 K series. In developing μ PD17132 programs, AS17K is used in combination with a device file (AS17120).	PC-9800 series	MS-DOS ${ }^{\text {TM }}$		$\begin{aligned} & 5.25 \text {-inch, } \\ & 2 H D \end{aligned}$	μ S5A10AS17K
					$\begin{aligned} & 3.5-\mathrm{inch}, \\ & 2 H D \end{aligned}$	μ S5A13AS17K
		IBMPC/AT	PC DOS ${ }^{\text {TM }}$		$\begin{aligned} & 5.25 \text {-inch, } \\ & 2 H C \end{aligned}$	μ S7B10AS17K
					$\begin{aligned} & 3.5 \text {-inch, } \\ & 2 \mathrm{HC} \end{aligned}$	μ S7B13AS17K
Device file (AS17120)	The AS17120 contains device files for the μ PD17120, μ PD17121, μ PD17132, and μ PD17133. It is used together with the assembler (AS17K), which is applicable to the 17 K series.	PC-9800 series	MS-DOS		$\begin{aligned} & 5.25 \text {-inch, } \\ & 2 H D \end{aligned}$	μ S5A10AS17120
					$\begin{aligned} & 3.5-\mathrm{inch} \text {, } \\ & 2 \mathrm{HD} \end{aligned}$	μ S5A13AS17120
		IBM PC/AT	PC DOS		$\begin{aligned} & \text { 5.25-inch, } \\ & 2 \mathrm{HC} \end{aligned}$	μ S7B10AS17120
					$\begin{aligned} & 3.5-\mathrm{inch}, \\ & 2 \mathrm{HC} \end{aligned}$	μ S7B13AS17120
Support software (SIMPLEHOST)	SIMPLEHOST, running on the Windows ${ }^{\text {TM }}$, provides man-machine-interface in developing programs by using a personal computer and the incircuit emulator.	PC-9800 series	MS-DOS	Windows	$\begin{aligned} & 5.25 \text {-inch, } \\ & 2 H D \end{aligned}$	μ S5A10IE17K
					$\begin{aligned} & 3.5-\mathrm{inch} \\ & 2 \mathrm{HD} \end{aligned}$	μ S5A13IE17K
		IBM PC/AT	PC DOS		$\begin{aligned} & 5.25 \text {-inch, } \\ & 2 \mathrm{HC} \end{aligned}$	μ S7B10IE17K
					$\begin{aligned} & 3.5-\mathrm{inch} \\ & 2 \mathrm{HC} \end{aligned}$	μ S7B13IE17K

Remark The following table lists the versions of the operating systems described in the above table.

OS	Versions
MS-DOS	Ver. 3.30 to Ver. 5.00ANote
PC DOS	Ver. 3.1 to Ver. 5.0Note
Windows	Ver. 3.0 to Ver. 3.1

Note MS-DOS versions 5.00 and 5.00A and PC DOS Ver. 5.0 are provided with a task swap function. This function, however, cannot be used in these software packages.

[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.
(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

SIMPLEHOST is a trademark of NEC Corporation.
 MS-DOS and Windows are trademarks of Microsoft Corporation.
 PC/AT and PC DOS are trademarks of IBM Corporation.

Abstract

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

