4-BIT SINGLE-CHIP MICROCONTROLLER FOR REMOTE CONTROL TRANSMISSION

DESCRIPTION

The μ PD61P24 is a 4-bit single-chip microcontroller for infrared remote controllers for TVs, VCRs, stereos, cassette decks, air conditioners, etc.

As the μ PD61P24 is user-programmable, it is ideal for evaluation of programs running in a $\mu \mathrm{PD} 6124 \mathrm{~A}$ or 6600 A , and for small-scale production of such systems.

The functions of the μ PD61P24 are described in detail in the following User's Manual. Be sure to read this manual before designing your system.
μ PD612X Series User's Manual: IEP-1083

FEATURES

- Transmitter for programmable infrared remote control-
ler
- 19 types of instructions
- Instruction execution time: $17.6 \mu \mathrm{~s}$ (with $455-\mathrm{kHz}$ ceramic resonator)
- On-chip one-time PROM: 1002×10 bits
- Data memory (RAM) capacity : 32×5 bits
- 9-bit programmable timer: 1 channel
- I/O pins (K/o): 8 pins
- Input pins (K_{I}): 4 pins
- Serial input pins (S-IN): 1 pin
- Transmission-in-progress indication pin (S-OUT): 1 pin
- Transmit carrier frequency (REM)
fosc/12, fosc/8
- Standby operation (HALT/STOP mode)
- Low power consumption
- Current consumption in STOP mode ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)
$1 \mu \mathrm{~A}$ MAX.
- Low-voltage operation: $\mathrm{V}_{\mathrm{DD}}=2.2$ to 5.5 V

Caution To use the NEC transmission format, ask NEC to supply the custom code. Do no use Rowhen using a register as an operand of the branch instruction.

ORDERING INFORMATION

Part Number	Package
μ PD61P24CS	20-pin plastic shrink DIP $(300 \mathrm{mil})$
μ PD61P24GS	20-pin plastic SOP $(300 \mathrm{mil})$

PIN CONFIGURATION (Top View)

(1) Normal operating mode

(2) PROM programming mode

Caution Round brackets () indicate the pins not used in the PROM programming mode.
L : Connect each of these pins to GND via a resistor (470 Ω).
Open: Leave these pins open.

BLOCK DIAGRAM

1. PROGRAM COUNTER (PC) 10 BITS

The program counter (PC) is a binary counter, which holds the address information for the program memory.

Figure 1-1. Program Counter Organization

PC_{9}	PC_{8}	PC_{7}	PC_{6}	PC_{5}	PC_{4}	PC_{3}	PC_{2}	PC_{1}	PC_{0}

Normally, the program counter contents are automatically incremented each time an instruction is executed, according to the number of instruction bytes.

When executing a jump instruction (JMPO, JC, JF), the program counter indicates the jump destination.
Immediate data or the data memory contents are loaded to all or some bits of the PC.
When executing the call instruction (CALLO), the PC contents are incremented (+1) and saved into the stack memory. Then, a value needed for each jump instruction will be loaded.

When executing the return instruction (RET), the stack memory contents are double incremented (+2) and loaded into the PC.

When "all clear" is input or on reset, the PC contents are cleared to " 000 H ".

2. STACK POINTER (SP) 2 BITS

This 2-bit register holds the start address information for the stack area. The stack area is shared with the data memory.

The SP contents are incremented, when the call instruction (CALLO) is executed. They are decremented, when the return instruction (RET) is executed.

The stack pointer is cleared to "00B" after reset or "all clear" is input, and indicates the highest address FH for the data memory as the stack area.

The figure below shows the relationship for the stack pointer and the data memory area.

If the stack pointer overflows or underflows, it is determined that the CPU overflows, and the PC internal reset signal will be generated.
3. PROGRAM MEMORY (ROM) 1002 STEPS $\times 10$ BITS

The program memory (ROM) is configured in 10 bits steps. It is addressed by the program counter. Program and table data are stored in the program memory.

Figure 3-1. Program Memory Map

4. DATA MEMORY (RAM) 32 WORDS $\times 5$ BITS

The data memory is a RAM of 32 words $\times 5$ bits. The data memory stores processing data. In some cases, the data memory is processed in 8-bit units. Ro may be used as the data pointer for the ROM.

Caution Avoid using the RAM areas Rd, R_{E}, and R_{f} in a CALL routine as much as possible because these areas are also used as stack memory areas (to prevent program hang-up in case the value of the SP is destroyed due to some reason such as noise).
When using these RAM areas as general-purpose RAM areas, be sure to include stack pointer checking in the main routine.

5. DATA POINTER (R_{0})

$R_{0}\left(R_{10}, R_{00}\right)$ for the data memory can serve as the data pointer for the ROM.
Ro specifies the low-order 8 bits in the ROM address. The high-order 2 bits in the ROM address are specified by the control register.

Table referencing for ROM data can be easily executed by calling the ROM contents by setting the ROM address to the data pointer.
$\star \quad$ On reset or "all clear" is input, it becomes undefined.

Figure 5-1. Data Pointer Organization

6. ACCUMULATOR (A)

4 BITS

The accumulator (A) is a 4-bit register. The accumulator plays a major role in each operation.

* On reset or "all clear" is input, it becomes undefined.

Figure 6-1. Accumulator Organization

7. ARITHMETIC LOGIC UNIT (ALU)

\qquad 4 BITS

The arithmetic logic unit (ALU) is a 4-bit operation circuit, and executes simple operations, such as arithmetic operations.

8. FLAGS

(1) Status flag

When the status for each pin is checked by the STTS instruction, if the condition coincides with the condition specified by the STTS instruction, the status flag (F) is set (to 1).
On reset or "all clear" is input, it becomes undefined.
(2) Carry flag

When the INC (increment) instruction or the RL (rotate left) instruction is executed, if a carry is generated from the MSB for the accumulator, the carry flag (C) is set (to 1).
The carry flag (C) is also set (to 1), if the contents for the accumulator are "FH", when the SCAF instruction is executed.

* On reset or "all clear" is input, it becomes undefined.

9. SYSTEM CLOCK GENERATOR

The system clock generator consists of a resonator, which uses a ceramic resonator (400 kHz to 500 kHz).

Figure 9-1. System Clock Generator

In the STOP mode (oscillation stop HALT instruction), the oscillator in the system clock generator stops its operation, and the system clock \varnothing is stopped.

10. TIMER

The timer block determines the transmission output pattern. The timer consists of 10 bits, of which 9 bits serve as the 9 -bit down counter and the remaining 1 bit serves as the 1 -bit latch, which determines the carrier output validity.

The 9 -bit down counter is decremented (-1) every $8 / f o s c(s)$ in synchronization with the machine cycle, after starting down count operation. Down counting stops after all of the 9 bits become 0 . When down counting is stopped, the signal indicating that the timer operation has stopped, is output. If the CPU is at standby (HALT TIMER) for

* the timer operation completion, the standby (HALT) condition is released and the next instruction will be executed. If the next instruction again sets the value of the down counter, down counting continues without any error (the carrier output of the REM pin is not affected).

Set the down count time according to the following calculation; (set value (HEX) +1) $\times 8 /$ fosc. Setting the value to the timer is done by the timer manipulation instruction.

When the down counter is operating, the remote control transmission carrier can be output to the REM pin. Whether or not to output the carrier can be selected by the MSB for the timer register block. Set "1", when outputting the carrier, or " 0 ", when not outputting the carrier.

If all the down counter bits become " 0 ", when outputting the carrier, the carrier output will be stopped. When not outputting the carrier, the REM pin output will become low level.

A signal in synchronization with the REM output is output to the S-OUT pin. However, the waveform for the SOUT pin is low, when the carrier is being output to the REM pin, or it is high, when the carrier is not being output to the REM pin.

If the HALT instruction, which initiates the oscillation stop mode, is executed when the down counter is operating, the oscillation stop mode is initiated after down counting is stopped (after 0).

Timer operation STOP/RUN is controlled by the control register (P_{1}). (Refer to 13. CONTROL REGISTER (P_{1}).)
$\star \quad$ At reset (all clear) time, the REM pin goes low and S-OUT pin goes high. All 10 bits of the timer are cleared to 000 H .

Caution Because the timer clock is not synchronized with the carrier output, the pulse width may be shortened at the beginning and end of the carrier output.

Figure 10-1. Timer Block Organization

11. PIN FUNCTIONS

11.1 K/o Pin (Po)

This is the 8-bit I/O pin for key-scan output. When the control register $\left(\mathrm{P}_{1}\right)$ is set for the input port, the port can be used as an 8-bit input pin. When the port is set for the input mode, all of these pins are pulled down to the Vss level inside the LSI.

At reset (all cleared), the value of I/O mode and output latch becomes undefined.

Figure 11-1. K $/ / o$ Pin Organization

11.2 Kı/o Pull-Down Resistor Configuration

When $\mathrm{K}_{1 / 0}$ is set to the input mode, pull-down resistor R is turned on.

11.3 Kı Pin (P_{12})

This is the 4-bit pin for key input. All of these pins are pulled down to the Vss level by PLA data.

Figure 11-2. Kı Pin Organization

11.4 Kı Pull-Down Resistor Configuration

When the pull-down resistor switch is turned on (set 1) by PLA data, pull-down resistor R is turned on.

11.5 S-OUT Pin

By going low whenever the carrier frequency is output from the REM pin, the S-OUT pin indicates that communication is in progress.

The S-OUT pin is CMOS output.
The S-OUT pin goes high on reset.

11.6 S-IN Pin (Do bit of P_{1})

To input serial data, use the S-IN pin. When control register (P_{1}) is set to serial input mode, the S -IN pin is connected as an input to the LSB of the accumulator; the S-IN pin is pulled down to the Vss level within the LSI. In this state, if the rotate-left accumulator instruction (RLA) is executed, the data on the S-IN pin is copied to the LSB of the accumulator.

If the control register is released from serial input mode, the S-IN pin goes into a high-impedance state, but no through current flows internally. When the RL A instruction is executed, the MSB is copied to the LSB.

At reset (all cleared), the S-IN pin goes into a high-impedance state.

Figure 11-3. Configuration of the S-IN Pin

* 12. PORT REGISTER (P_{\times})
$\mathrm{K}_{1 / 0}, \mathrm{~K}_{\mathrm{I}}$, and the control register are handled as port registers.
The table below shows the relations between the port registers and pins.

Table 12-1. Relations between Port Registers and Pins

Pin Name	Input Mode		Output Mode		On Reset
	Read	Write	Read	Write	
Kı/O	Pin status	Output latch	Pin status	Output latch	Undefined [input mode, output latch]
Kı	Pin status	-	-	-	Input mode
S-IN	Pin status is read by RL A instruction when D_{0} of P_{1} register $=1$.				High impedance (D_{0} of P_{1} register $=0$)

$\mathrm{P}_{1 \times} \times(\mathrm{H})$	Pox (L)
$\begin{array}{ll} & \mathrm{K}_{1 / 07-4} \\ \mathrm{P}_{10} & \end{array}$	$\mathrm{P}_{00} \quad \mathrm{~K}_{1 / 03-0}$
Control register (H) P_{11}	Control register (L) P_{01}
$\begin{array}{ll} & \mathrm{K}_{13-0} \\ \mathrm{P}_{12} & \end{array}$	P_{02}

13. CONTROL REGISTER (P_{1})

The control register contains of 10 bits. The controllable items are shown in Table 13-1.

Table 13-1. Control Register (P_{1})

Bit		D9	D8	D7	D6	D 5	D4	D3	D 2	D 1	Do
Name		Test mode		-	HALT	$\begin{aligned} & \text { D.P. } \\ & \text { AD. } \end{aligned}$	$\begin{aligned} & \text { D.P. } \\ & A D_{8} \end{aligned}$	MOD	Timer	Kıo	$\begin{gathered} \mathrm{RL} \mathrm{Acc} \\ \mathrm{~A}_{0} \leftarrow \end{gathered}$
Set Value	0	Be sure to set 0 .			NOP	$A D_{9}=0$	$\mathrm{AD}_{8}=0$	fosc/8	STOP	IN	A_{3}
	1				$\begin{aligned} & \text { OSC } \\ & \text { STOP } \end{aligned}$	$\mathrm{AD}_{9}=1$	$\mathrm{AD}_{8}=1$	fosc/12	RUN	OUT	S-IN

Do

D1
...................... Specifies the status of K//o, as follows:
0 : input mode, 1 : output mode
D2 \qquad Specifies the status of the timer, as follows:

0 : Count stop, 1: Count execution
$\mathrm{D}_{3} \ldots . ~ S p e c i f i e s ~ t h e ~ c a r r i e r ~ f r e q u e n c y ~ o u t p u t ~ f r o m ~ t h e ~ R E M ~ p i n . ~$ $0:$ fosc/8, 1: fosc/12
$D_{4}, D_{5} \ldots \ldots$. Specify the high-order 2 bits of the ROM data pointer.
D6 \qquad Determines what happen to the oscillation circuit when the HALT instruction is executed.
0: Oscillation does not stop
1: Oscillation stops (STOP mode)
D7 \qquad Be sure to set this bit to 0 .
D8, D9 \qquad These bits specify test modes. Be sure to set them to 0 .
$\star \quad$ Remark $\quad \mathrm{D}_{0}=\mathrm{D}_{8}=\mathrm{D}_{9}=0$ on reset, and the other bits are undefined.

14. STANDBY FUNCTION (HALT INSTRUCTION)

The μ PD6600A is provided with the standby mode (HALT instruction), in order to reduce the power consumption, when not executing the program. Clock oscillation can be stopped in the standby mode (STOP mode).

In the standby mode, the program execution stops. However, the contents of the internal registers and the data memory are all retained.

14.1 STOP Mode (Oscillation stop HALT instruction)

In the STOP mode, the operation of the system clock generator (ceramic resonator oscillation circuit) stops. Therefore, operations requiring the system clock will stop.

If the HALT instruction is executed during timer operation, the program counter stops. The oscillation stop mode will be initiated, after the timer count down operation is completed.

14.2 HALT Mode (Oscillation continue HALT instruction)

The CPU stops its operation, until the HALT release condition is satisfied.
The system clock operation continues in this mode.

14.3 Standby Release Conditions

(1) S-IN input
(2) Kıo input
(3) Kı input
(4) Timer count down operation completion

Remark Either high level or low level can be specified for setting a release condition by input.

Table 14-1. Standby Mode Releasing Condition

D_{3}	D_{2}	D 1	Do	Releasing Condition	Remarks
0/1	0	0	0	S-IN	When $R L \leftarrow A_{3}$ is selected, the standby mode is always released.
	0	0	1	Kıo	Valid only in the IN mode.
	0	1	0	Kı	
0	0	1	1	Timer	Released when 0.
Releasing condition: "0"...Low level detection " 1 "....High level detection					

15. AC PIN (ALL CLEAR PIN)

Internal part of the CPU including the program counter can be reset by setting the AC pin to the low level.

Watchdog Timer Function

A power-on reset function and a CR watchdog timer function, that can be controlled by program, can be realized by connecting a $0.1 \mu \mathrm{~F}$ capacitor across the AC pin and the $\mathrm{V} s$.

Caution When the watchdog timer function is not used, switch to charging mode by executing a NOP instruction immediately before a HALT instruction at the beginning of the program. (Be sure to connect the capacitor.)

16. MASK OPTIONS (PLA DATA)

The following items are fixed by mask option:

- Kı, S-IN pin pull-down resistor provided
- Carrier duty selection $(1 / 3)$ at fosc/12
- Hang-up detection provided

<1> Kı/o ALL

The system is reset when the hang-up detection Kı/o ALL switch is set to ON ("1") by PLA data and if the $\mathrm{K}_{\mathrm{I} / \text { o p }}$ pins are in the input mode in the oscillation stop HALT mode or if even one of the KI/o pins is low. To use a pin as a key source of the switch, turn ON the switch with PLA data.

Figure 16-1. Hang-up Detection KI/o ALL Configuration Diagram

<2> HALT release condition specification (S-IN, Kı/o, Kı)

The system is reset if $\mathrm{S}-\mathrm{IN}$ and $\mathrm{K}_{I / O}$ are used in the HALT mode when S-IN and $\mathrm{K}_{1 / 0}$ are specified by PLA data not to be used (" 1 "). KI is used (" 0 ").

BIT Assignment by Switch Selection

	Corresponding Portion	MSB							SB		
		7	6	5	4	3	2	1	0		
0	KI pull-down resistor ${ }^{\text {Note }}$	K_{13}	K12	Kı1	Kı0	0					
		1 (Provided)	1 (Provided)	1 (Provided)	1 (Provided)						
1	$\begin{aligned} & \text { Duty } \\ & \text { S-IN } \end{aligned}$	0	0	0	Duty	0	0	$\begin{gathered} \mathrm{S}-\mathrm{IN} \\ \text { pull-down } \\ \text { resistor } \end{gathered}$	0		
					$\begin{gathered} 1 \\ \text { (1/3 duty) } \end{gathered}$			$\begin{gathered} 1 \\ \text { (Provided) } \end{gathered}$			
2	Hang-up detection	K//o ALL	$\begin{aligned} & \text { HALT } \\ & \text { S-IN } \end{aligned}$	$\begin{gathered} \text { HALT } \\ \text { K/o } \\ \hline \end{gathered}$	$\begin{gathered} \text { HALT } \\ \text { Kı } \end{gathered}$	0					
		1 (Detection provided)	1 (Unused)	1 (Unused)	$\begin{gathered} 0 \\ \text { (Used) } \end{gathered}$						

17. WRITING, READING, AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

To write, read, or verify the PROM, set the PROM mode and use the pins shown in Table 17-1. No address input pin is used. To update the address, the clock signal input from the CLK pin is used.

Table 17-1. Pins Used to Write, Read, and Verify Program Memory

Symbol	Function
VPP	Applies program voltage (12.5 V)
CLK	Inputs clock to update address
MD0-MD3	Selects operation mode
D0-D7	Inputs/outputs 8-bit data
VDD	Applies supply voltage (6 V)

17.1 Operation Mode When Writing, Reading, and Verifying Program Memory

The μ PD61P24 enters the program memory write, read, or verify mode if +6 V is applied to the VDD pin and +12.5 V is applied to the VPP pin after the reset status has been held a certain time ($\mathrm{V} D \mathrm{D}=5 \mathrm{~V}, \mathrm{AC}=$ low level).

In this mode, the operation modes listed in Table 17-2 can be selected by using the MD0 through MD3 pins.
Any input pins not used for writing, reading, or verifying the program memory must be open or connected to GND via a pull-down resistor (470 Ω).

Table 17-2. Operating Mode When Writing, Reading, and Verifying Program Memory

Specifies Operation Mode						Operation Mode
Vpp	VDD	MD0	MD1	MD2	MD3	
+12.5 V	$+6 \mathrm{~V}$	H	L	H	L	Clears program memory address to 0
		L	H	H	H	Write mode
		L	L	H	H	Read and verify modes
		H	\times	H	H	Program inhibit mode

\times : don't care (L or H)

17.2 Program Memory Writing Procedure

The program memory is written at high speed in the following procedure.
(1) Pull down the pins not used to GND via resistor. Keep the CLK pin low.
(2) Supply 5 V to the Vdd pin. Keep the Vpp pin low.
(3) Wait for $10 \mu \mathrm{~s}$, and supply 5 V to the Vpp pin.
(4) Set the mode in which the program memory address is cleared to 0 , by using the mode setting pins.
(5) Supply 6 V to V dd and 12.5 V to V PP.
(6) Set the program inhibit mode.
(7) Write data in the 1 -ms write mode.
(8) Set the program inhibit mode.
(9) Set the verify mode. If the data has been correctly written, proceed to (10). If not, repeat (7) through (9).
(10) Additional writing of (Number of times data has been written in (7) through (9): X) $\times 1 \mathrm{~ms}$
(11) Set the program inhibit mode.
(12) Input a pulse four times to the CLK pin to update the program memory address (+1).
(13) Repeat (7) through (12) until the data is written to the last address.
(14) Set the mode in which the program memory address is cleared to 0.
(15) Change the voltage on the VDD and VPP pins to 5 V .
(16) Turn off power supply.

Program memory writing steps (2) through (12) are illustrated below.

17.3 Program Memory Reading Procedure

(1) Pull down the pins not used to GND via resistor. Keep the CLK pin low.
(2) Supply 5 V to the Vdd pin. Keep the Vpp pin low.
(3) Wait for $10 \mu \mathrm{~s}$, and supply 5 V to the Vpp pin.
(4) Set the mode in which the program memory address is cleared to 0 , by using the mode setting pins.
(5) Supply 6 V to Vdd and 12.5 V to Vpp.
(6) Set the program inhibit mode.
(7) Set the verify mode. If a clock pulse is input to the CLK pin, the data of one address is output each time the pulse has been input to the CLK pin four times.
(8) Set the program inhibit mode.
(9) Set the mode in which the program memory address is cleared to 0.
(10) Change the voltage on the VdD and Vpp pins to 5 V .
(11) Turn off power supply.

Program memory reading steps (2) through (9) are illustrated below.

18. INSTRUCTION SET

Accumulator Manipulation Instructions

	Rr_{r}	-	R10	R11	R12	R1F	Roo	R01	Rof
			D00	D01	D02	DOF	D20	D21	D2F
ANL	A, @RoH	D10							
ANL	A, @RoL	D30							
ANL	A, \#data	D31							
ORL	A, Rr		E00	E01	E02	EOF	E20	E21	E2F
ORL	A, @RoH	E10							
ORL	A, @RoL	E30							
ORL	A, \#data	E31							
XRL	A, Rr		A00	A01	A02	AOF	A20	A21	A2F
XRL	A, @RoH	A10							
XRL	A, @RoL	A30							
XRL	A, \#data	A31							
INC	A	A13							
RL	A	F13							

Input/Output Instructions

PP			P_{10}	P_{11}	P_{12}	Poo	P01	P02
IN			F18	F19	F1A	F38	F39	F3A
OUT	Pp,		218	219	21A	238	239	23A
ANL	A,		D18	D19	D1A	D38	D39	D3A
ORL	A,		E18	E19	E1A	E38	E39	E3A
XRL			A18	A19	A1Z	A38	A39	A3A

		P_{p}	P_{0}	P_{1}	P_{2}
	OUT	P_{p}	\#data	318	319

$P_{1 P}$ and Pop operate in pair format

Data Transfer Instructions

	R_{r}		R_{10}	R_{11}	R_{12}	\cdots	$R_{1 F}$	R_{00}	R_{01}	$\cdots-\cdots$	$R_{0 F}$
MOV A, Rr		F00	F01	F02		F0F	F20	F21		F2F	
MOV A, @RoH	F10										
MOV A, @RoH	F30										
MOV A, \#data	F31				\cdots						
MOV Rr, A		200	201	202	\cdots	$20 F$	220	221	$\cdots-\cdots$	$22 F$	

	R_{r}		R_{0}	R_{1}	R_{2}	\cdots	R_{F}
MOV	R_{r}, \#data		300	301	302		30 F
MOV $\mathrm{Rr}_{r}, @ R_{0}$		320	321	322		32 F	

R1r and Ror operate in pair format

Branch Instructions

\star

	-	-	Ro	R_{1}	R2	RF_{F}	\leftarrow Pair register
JMP0	addr	411					
JMP0	RrNote	-	-	401	402	40F	
JC	addr	611					
JC	RrNote	-	-	601	602	60F	
JNC	addr	631					
JNC	Rr ${ }^{\text {Note }}$	-	-	621	622	62F	
JF	addr	711					
JF	Rr ${ }^{\text {Note }}$	-	-	701	702	70F	
JNF	addr	731					
JNF	Rr ${ }^{\text {Note }}$	-	-	721	722	72F	

* Note $r=1$ through F
$r=0$ canot be used.

Subroutine Instructions

CALLO addr	312	411
RET	412	

Timer/Counter Manipulation Instructions

		T_{t}	T_{0-1}	$\mathrm{~T}_{1}$	$\mathrm{~T}_{0}$
MOV	A,	T_{t}	-	F 1 F	F 3 F
MOV	T_{t},	A		21 F	23 F
MOV	T,	\#data	31 F		
MOV	T,	@R R_{0}	33 F		

Other Instructions

		R_{00}	R_{01}	R_{02}	$\cdots \cdots$	RoF $^{\prime}$
HALT \#data	111				\cdots	
STTS Ror		120	121	122		$12 F$
STTS \#data	131					
SCAF	D13					
NOP	000					

19. APPLICATION CIRCUIT EXAMPLE

Caution The ceramic resonator start up capacitor value must be determined, by taking the voltage level and the oscillation start up characteristics for the ceramic resonator into consideration.

20. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Ratings	Unit
Supply Voltage	V_{DD}	7.0	V
Input Voltage	V_{IN}	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Operating Ambient Temperature	T_{A}	-20 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

Caution Even if one of the parameters exceeds its absolute maximum rating even momentarily, the quality of the product may be degraded. The absolute maximum rating therefore specifies the upper or lower limit of the value at which the product can be used without physical damages. Be sure to use the product(s) within the ratings.

Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	VDD	2.2		5.5	V
Oscillation Frequency	fosc	400		500	kHz

DC Characteristics ($\mathrm{VDD}=3.0 \mathrm{~V}$, fosc $=455 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply Voltage	VdD		2.2		5.5	V
Current Consumption 1	IdD1	$\mathrm{fosc}=455 \mathrm{kHz}$		0.3	1.5	mA
Current Consumption 2	IdD2	fosc $=$ STOP			1.0	$\mu \mathrm{A}$
REM High Level Output Current	Іон1	V o $=1.0 \mathrm{~V}$	-5	-8	-15	mA
REM Low Level Output Current	lolı	V o $=0.3 \mathrm{~V}$	0.5	1.5	2.5	mA
S-OUT High Level Output Current	Іон2	V o $=2.7 \mathrm{~V}$	-0.3	-1.0	-2.0	mA
S-OUT Low Level Output Current	lol2	V o $=0.3 \mathrm{~V}$	1	1.5	2.5	mA
KI High Level Input Current	$\mathrm{l}_{\mathbf{H} 1}$	$\mathrm{V}_{1}=3.0 \mathrm{~V}$	10		30	$\mu \mathrm{A}$
KI High Level Input Current	$\mathrm{liH1}^{\prime}$	$\mathrm{V}_{1}=3.0 \mathrm{~V}$, without pull-down resistor			0.2	$\mu \mathrm{A}$
KI Low Level Input Current	ILL1	$\mathrm{V}_{1}=0 \mathrm{~V}$			-0.2	$\mu \mathrm{A}$
KI/O High Level Input Current	$\mathrm{l}_{\mathbf{H} 2}$	$\mathrm{V}_{1}=3.0 \mathrm{~V}$	10		30	$\mu \mathrm{A}$
KI/O High Level Input Current	ІІн2'	$\mathrm{V}_{1}=3.0 \mathrm{~V}$, without pull-down resistor			0.2	$\mu \mathrm{A}$
KI/O Low Level Input Current	IIL2	$\mathrm{V}_{1}=0 \mathrm{~V}$			-0.2	$\mu \mathrm{A}$
KI/O High Level Output Current	Іон3	$\mathrm{V}_{0}=2.5 \mathrm{~V}$	-1.5	-2.0	-4.0	mA
KI/O Low Level Output Current	loL3	$\mathrm{V}_{0}=2.1 \mathrm{~V}$	25	50	100	$\mu \mathrm{A}$
S-IN High Level Input Current	ІІнз	$\mathrm{V}_{1}=3.0 \mathrm{~V}$	6		15	$\mu \mathrm{A}$
S-IN High Level Input Current	ІІнз'	$\mathrm{V}_{1}=3.0 \mathrm{~V}$, without pull-down resistor			0.2	$\mu \mathrm{A}$
S-IN Low Level Input Current	lıL3	$\mathrm{V}_{1}=0 \mathrm{~V}$			-0.2	$\mu \mathrm{A}$
KI High Level Input Voltage	$\mathrm{V}_{\mathbf{H} 1}$		2.1		3.0	V
KI Low Level Input Voltage	VIL1	$\mathrm{V}_{\mathrm{I}}=3.0 \mathrm{~V}$	0		0.9	V
KI/O High Level Input Voltage	$\mathrm{V}_{\mathrm{IH} 2}$		1.3		3.0	V
KI/O Low Level Input Voltage	VIL2		0		0.4	V
S-IN High Level Input Voltage	l_{1+3}		1.1		3.0	V
S-IN Low Level Input Voltage	lıL3		0		0.4	V
AC Pull-Up Resistor	R_{1}	V I $=0 \mathrm{~V}$	0.3		3.0	k Ω
AC Pull-Down Resistor	R2	$\mathrm{V}_{1}=2.7 \mathrm{~V}$	150	400	1500	k Ω
AC High Level Input Voltage	$\mathrm{V}_{\mathrm{H} 4}$		1.8		3.0	V
AC Low Level Input Voltage	VIL4		0		1.2	V

DC Programming Characteristics ($\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \pm 0.5 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-level input voltage	$\mathrm{V}_{\mathbf{H} 1}$	Other than CLK	0.7 VDD		Vdo	V
	$\mathrm{V}_{\mathbf{H} 2}$	CLK	Vdo-0.5		Vdo	V
Low-level input voltage	VIL1	Other than CLK	0		0.3 VDD	V
	VIL2	CLK	0		0.4	V
Input leakage current	lı	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$			10	$\mu \mathrm{A}$
High-level output voltage	Vон	$\mathrm{I} \mathrm{OH}=-1 \mathrm{~mA}$	VDD-1.0			V
Low-level output voltage	Vos	$\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
VDD supply current	IdD				30	mA
VPP supply current	Ipp	MD0 $=$ VIL, MD1 $=\mathrm{V}_{\text {IH }}$			30	mA

Cautions 1. Keep VPP to within +13.5 V including the overshoot.
2. Apply Vdd before Vpp, and turn it off after Vpp.

AC Programming Characteristics ($\mathrm{T}_{\mathrm{A}}=25 \pm 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=6.0 \pm 0.25 \mathrm{~V}, \mathrm{VPP}=12.5 \pm 0.5 \mathrm{~V}$)

Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time ${ }^{\text {Note } 2}$ (vs. MDO \downarrow)	tas	tAs		2			$\mu \mathrm{s}$
MD1 setup time (vs. MD0 \downarrow)	tmis	toes		2			$\mu \mathrm{s}$
Data setup time (vs. MDO \downarrow)	tos	tos		2			$\mu \mathrm{s}$
Address hold time ${ }^{\text {Note } 2}$ (vs. MDO ${ }^{\text {a }}$)	tah	tah		2			$\mu \mathrm{s}$
Data hold time (vs. MDO \uparrow)	tD ${ }^{\text {d }}$	tD		2			$\mu \mathrm{s}$
MDO $\uparrow \rightarrow$ data output float delay time	tDF	tDF		0		130	ns
VPP setup time (vs. MD3 \uparrow)	tvps	tvps		2			$\mu \mathrm{s}$
VDD setup time (vs. MD3 \uparrow)	tvos	tvcs		2			$\mu \mathrm{s}$
Initial program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (vs. MD1 \uparrow)	tmos	tces		2			$\mu \mathrm{s}$
MDO $\downarrow \rightarrow$ data output delay time	tov	tDv	$\mathrm{MD0}=\mathrm{MD1}=\mathrm{V}$ IL			1	$\mu \mathrm{s}$
MD1 hold time (vs. MD0 \uparrow)	tm1 ${ }^{\text {H}}$	toen		2			$\mu \mathrm{s}$
MD1 recovery time (vs. MD0 \downarrow)	tm1R	tor		2			$\mu \mathrm{s}$
Program counter reset time	tPCR	-		10			$\mu \mathrm{s}$
CLK input high-, low-level widths	txh, txı	-		0.125			$\mu \mathrm{s}$
CLK input frequency	f_{x}	-				4.19	MHz
Initial mode set time	t	-		2			$\mu \mathrm{s}$
MD3 setup time (vs. MD1 \uparrow)	tm3s	-		2			$\mu \mathrm{s}$
MD3 hold time (vs. MD1 \downarrow)	tмзн	-		2			$\mu \mathrm{s}$
MD3 setup time (vs. MD0 \downarrow)	tm3sR	-	On reading program memory	2			$\mu \mathrm{S}$
Address $^{\text {Note } 2} \rightarrow$ data output delay time	tdad	tacc	On reading program memory			2	$\mu \mathrm{s}$
Address ${ }^{\text {Note } 2} \rightarrow$ data output hold time	thad	toн	On reading program memory	0		130	ns
MD3 hold time (vs. MD0 \uparrow)	tM3 ${ }^{\text {HR }}$	-	On reading program memory	2			$\mu \mathrm{s}$
MD3 $\downarrow \rightarrow$ data output float delay time	tofr	-	On reading program memory			2	$\mu \mathrm{s}$
Reset setup time	tres			10			$\mu \mathrm{s}$

Notes 1. Corresponding symbols of $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ (the $\mu \mathrm{PD} 27 \mathrm{C} 256 \mathrm{~A}$ is a maintenance product).
2. The internal address signal is incremented by one at the falling edge of CLK input at the third clock.

PROGRAM MEMORY WRITE TIMING

PROGRAM MEMORY READ TIMING

21. PACKAGE DRAWINGS

^ 20 PIN PLASTIC SOP (300 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.
detail of lead end

ITEM	MILLIMETERS	INCHES
A	13.00 MAX.	0.512 MAX.
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.40_{-0.05}^{+0.10}$	$0.016_{-0.003}^{+0.004}$
E	0.1 ± 0.1	0.004 ± 0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
H	7.7 ± 0.3	0.303 ± 0.012
I	5.6	0.220
J	1.1	0.043
K	$0.20_{-0.05}^{+0.10}$	$0.008_{-0.002}^{+0.004}$
L	0.6 ± 0.2	$0.024_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3^{\circ+7_{-3}^{\circ}}$	$3^{\circ}{ }_{-3^{\circ}}^{\circ}$
		P20GM-50-300B, C-4

$\star \quad$ 20PIN PLASTIC SHRINK DIP (300 mil)

NOTES

1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
2) Item " K " to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	19.57 MAX.	0.771 MAX.
B	1.78 MAX.	0.070 MAX.
C	1.778 (T.P.)	0.070 (T.P.)
D	0.50 ± 0.10	$0.020_{-0.005}^{+0.004}$
F	0.85 MIN.	0.033 MIN.
G	3.2 ± 0.3	0.126 ± 0.012
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	7.62 (T.P.)	0.300 (T.P.)
L	6.5	0.256
M	$0.25_{-0.0}^{+0.10}$	$0.010_{-0.003}^{+0.004}$
N	0.17	0.007
R	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
		P20C-70-300B-1

22. RECOMMENDED SOLDERING CONDITIONS

It is recommended that μ PD6124A and 6600A be soldered under the following conditions.
$\star \quad$ For details on the recommended soldering conditions, refer to Information Document, Semiconductor Device Mounting Technology Manual (C10535E).

For other soldering methods and conditions, consult NEC.

Table 22-1. Soldering Conditions of Surface-Mount Type
μ PD61P24GS: 20-pin plastic SOP (300 mil)

Soldering Method	Soldering Conditions
Partial Heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., time: 3 seconds max. (per device side)

Table 22-2. Soldering Conditions of Through-Hole Type
μ PD61P24CS: 20-pin plastic shrink DIP (300 mil)

Soldering Method	Soldering Conditions
Wave Soldering (Only for pin part)	Solder bath temperature: $260^{\circ} \mathrm{C}$ max., time: 10 seconds max.
Partial Heating	Pin temperature: $300^{\circ} \mathrm{C}$ max., time: 3 seconds max. (per pin)

Caution When soldering this product using of wave soldering, exercise care that the solder does not come in direct contact with the package.

APPENDIX A. μ PD612× SERIES PRODUCT LIST

Part Number Item	μ PD6124A	μ PD6600A	μ PD61P24	μ PD6125A	μ PD6126A
ROM capacity	1002×10 bits (mask ROM)	512×10 bits (mask ROM)	1002×10 bits (one-time PROM)	1002×10 bits (mask ROM)	
RAM capacity	32×5 bits				
I/O pin	8 pins (K/00-7)			12 pins (K/00-7, I/O00-03)	16 pins (K/00-7, I/O00-03, I/O10-13)
S-IN pin	Provided				
Current consumption (fosc = STOP) (MAX.)	$2 \mu \mathrm{~A}$		$1 \mu \mathrm{~A}$		
S-IN high-level input current (MAX.)	$30 \mu \mathrm{~A}$		$15 \mu \mathrm{~A}$		
Transmission carrier frequency	fosc/12, fosc/8				
Low-voltage detection (reset) function	Provided		None		
Mask option	Provided		None (fixed)	Provided	
Supply voltage	$V_{D D}=2.2$ to 5.5 V	$V_{D D}=2.2$ to 3.6 V	$V_{D D}=2.2$ to 5.5 V	$V_{D D}=2.0$ to 6.0 V	
Package	- 20-pin plastic SOP (300 mil) - 20-pin plastic shrink DIP (300 mil)			- 24-pin plastic SOP (300 mil) - 24-pin plastic shrink DIP (300 mil)	- 28-pin plastic SOP (375 mil)

APPENDIX B. DEVELOPMENT TOOLS

The following tools are available for program development using the μ PD61P24.

Document	Document No.
μ PS612X Series Emulator	_-Note 1
μ PS61P24 Assembler	_Note 1
PROM Programmer	AF-9703 Note 2, 3
	AF-9704 Note 2, 3
	AF-9705 Note 3
AF-9706 Note 3	
μ PD61P24 Program Adapter	AF9807B Note 3

Notes 1. These are products from I.C Corp. For details, consult I.C Corp.
I.C Corp.

6th Barnet Gotanda Bldg.
1-9-5 Higashi-Gotanda, Shinagawa-ku, Tokyo 141
Tel. 03-3447-3793
Fax. 03-3440-5606
2. Not available.
3. These are products from Ando Electric Co., Ltd. For details, consult Ando Electric Co., Ltd.

Ando Electric Co., Ltd.
4-19-7 Kamata, Ota-ku, Tokyo 144
Tel. 0120-40-0211(toll-free)

Caution Use a writing program after assembling the program, convert the HEX file to a ROM file by using the PROM utility program "UPDPROM" (refer to AS612X Assembler User's Manual(IEM-1016)).

NEC
[MEMO]

NOTES FOR CMOS DEVICES

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd.
Benelux Office Hong Kong
Eindhoven, The Netherlands Tel:2886-9318
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

[MEMO]

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

