

MOS INTEGRATED CIRCUIT μ PD75P216A

4-BIT SINGLE-CHIP MICROCOMPUTER

The μ PD75P216A is a One-Time PROM version of the μ PD75216A. The μ PD75P216A is suitable for small-scale production or experimental production in system development.

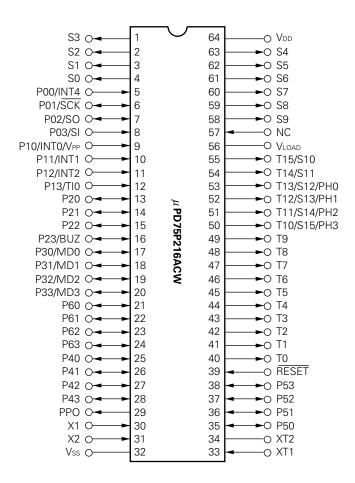
Also see documents for the μ PD75216A.

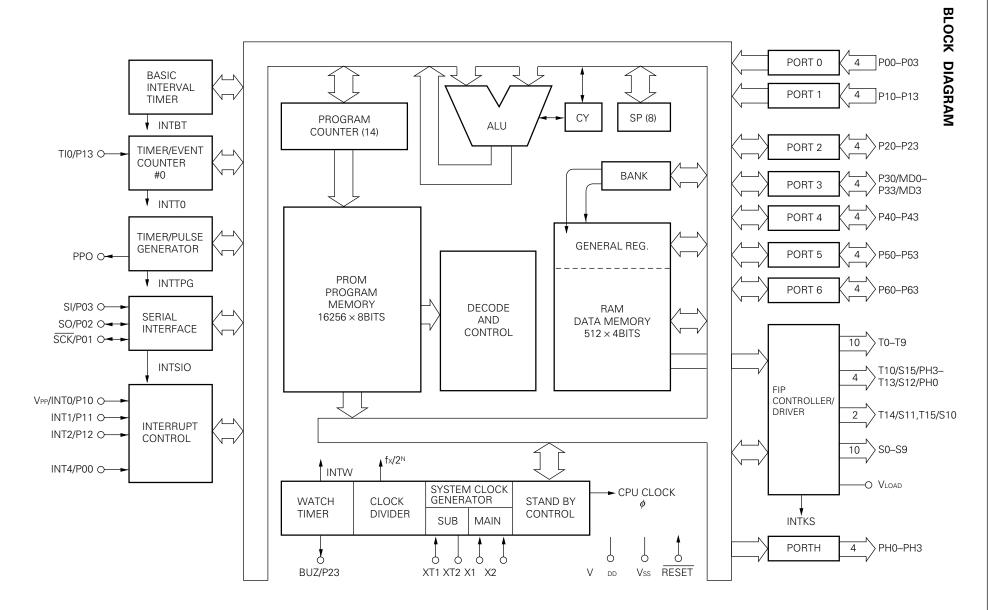
FEATURES

- The μPD75216A compatible
- 16256 X 8 bits of on-chip one-time PROM
- Port 6 without pull-down resistor
- High voltage output for display
 S0 to S8, T0 to T9: On-chip load resistor
 S9, T10 to T15: Open drain
- Power-on reset circuit is not available
- Single power supply (5 V ± 10 %)

ORDERING INFORMATION

Part Number	Package	Quality Grade
μPD75P216ACW	64-pin plastic shrink DIP (750 mil)	Standard


Caution Pull-up resistor mask options are not available.


Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

The information in this document is subject to change without notice.

PIN CONFIGURATION (Top View)

CONTENTS

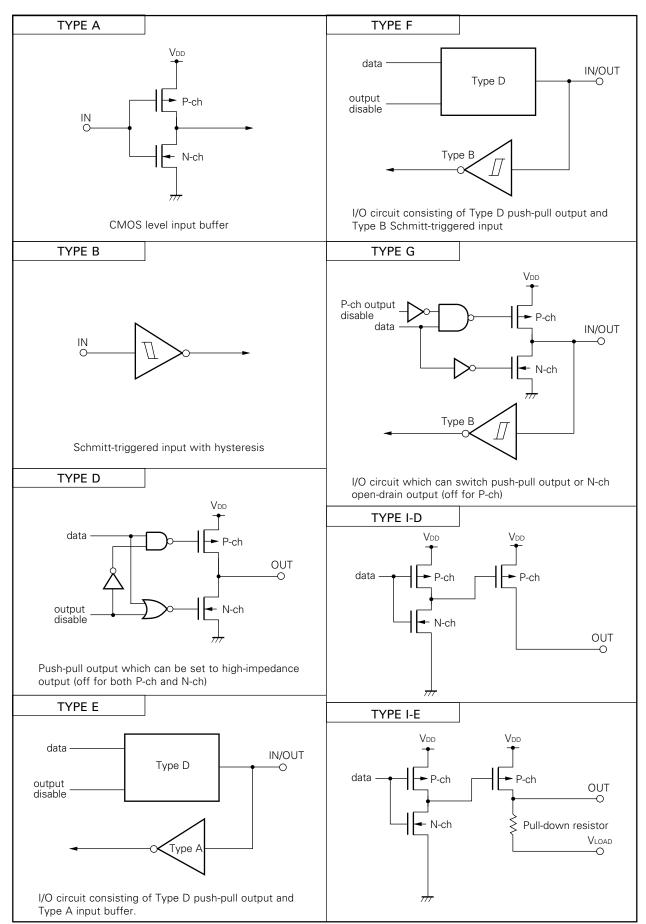
1.1 PORT PINS 5 1.2 NON-PORT PINS 6 1.3 TREATMENT OF UNUSED PINS 8 2. DIFFERENCES BETWEEN THE μPD75P216A AND THE μPD75216A, μPD75208 9 3. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY 10 3.1 PROM WRITE AND VERIFY OPERATION 10 3.2 PROM WRITE PROCEDURE 11 3.3 PROM READ PROCEDURE 12 4. ELECTRICAL SPECIFICATIONS 13 5. PACKAGE DRAWINGS 22 6. RECOMMENDED SOLDERING CONDITIONS 23 APPENDIX DEVELOPMENT TOOLS 24	1.	PIN	FUNCTIONS	5
1.3 TREATMENT OF UNUSED PINS 8 2. DIFFERENCES BETWEEN THE μPD75P216A AND THE μPD75216A, μPD75208 9 3. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY 10 3.1 PROM WRITE AND VERIFY OPERATION 10 3.2 PROM WRITE PROCEDURE 11 3.3 PROM READ PROCEDURE 12 4. ELECTRICAL SPECIFICATIONS 13 5. PACKAGE DRAWINGS 22 6. RECOMMENDED SOLDERING CONDITIONS 23		1.1	PORT PINS	5
2. DIFFERENCES BETWEEN THE µPD75P216A AND THE µPD75216A, µPD75208		1.2	NON-PORT PINS	6
3. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY 10 3.1 PROM WRITE AND VERIFY OPERATION 10 3.2 PROM WRITE PROCEDURE 11 3.3 PROM READ PROCEDURE 12 4. ELECTRICAL SPECIFICATIONS 13 5. PACKAGE DRAWINGS 22 6. RECOMMENDED SOLDERING CONDITIONS 23		1.3	TREATMENT OF UNUSED PINS	8
3.1 PROM WRITE AND VERIFY OPERATION	2.	DIFF	ERENCES BETWEEN THE μ PD75P216A AND THE μ PD75216A, μ PD75208	9
3.2 PROM WRITE PROCEDURE 11 3.3 PROM READ PROCEDURE 12 4. ELECTRICAL SPECIFICATIONS 13 5. PACKAGE DRAWINGS 22 6. RECOMMENDED SOLDERING CONDITIONS 23	3.			
3.3 PROM READ PROCEDURE 12 4. ELECTRICAL SPECIFICATIONS 13 5. PACKAGE DRAWINGS 22 6. RECOMMENDED SOLDERING CONDITIONS 23				
4. ELECTRICAL SPECIFICATIONS				
5. PACKAGE DRAWINGS		3.3	PROM READ PROCEDURE	12
6. RECOMMENDED SOLDERING CONDITIONS23				
	5.	PAC	KAGE DRAWINGS2	22
APPENDIX DEVELOPMENT TOOLS24	6.	REC	OMMENDED SOLDERING CONDITIONS2	23
	ΑP	PENI	DIX DEVELOPMENT TOOLS2	24

1. PIN FUNCTIONS

1.1 PORT PINS

Pin name	Input/ output	Shared pin		Function	8-bit I/O	When reset	I/O circuit type Note
P00	Input	INT4	4-bit inpu	t port (PORT0).	х	Input	B
P01	I/O	SCK					F
P02	I/O	so					G
P03	Input	SI					B
P10	Input	INT0/V _{PP}		With noise elimination function	x	Input	B
P11		INT1		With noise elimination function	1		
P12		INT2	4-bit inpu	t port (PORT1).			
P13		TI0					
P20	I/O	_	4-bit I/O p	port (PORT2).	×	Input	Е
P21		_					
P22		_					
P23		BUZ					
P30 - P33	I/O	MD0 - MD3	Programmable 4-bit I/O port (PORT3). I/O can be specified bit by bit.		×	Input	Е
P40 - P43	I/O	_	4-bit I/O port (PORT4). Can directly drive LEDs. Data input/output pins for the PROM write and verify (Four low-order bits).		0	Input	E
P50 - P53	I/O	_	4-bit I/O port (PORT5). Can directly drive LEDs. Data input/output pins for the PROM write and verify (Four high-order bits).		0	Input	Е
P60 - P63	I/O	-	Programmable 4-bit I/O port (PORT6). I/O can be specified bit by bit. Suitable for keyboard input.		×	Input	E
PH0	Output	T13/S12	4-bit P-ch open-drain output port		×	High	I-D
PH1		T12/S13	Can withstand high voltage and high current (PORTH)			impedance	
PH2	1	T11/S14	g.i carr				
PH3		T10/S15					

Note The circle (\bigcirc) indicates the Schmitt triggered input.


1.2 NON-PORT PINS

Pin name	Input/ output	Shared pin		Function	When reset	I/O circuit type Note 1
T0 - T9		_	Note 2	Used for digit output Can withstand high voltage and high current	Low level	I - E
T10/S15 - T13/S12		PH3-PH0		For digit/segment output Can withstand high voltage and high current Unused pin can be used as PORTH.		
T14/S11, T15/S10	Output		Note 3	For digit/segment output Can withstand high voltage and high current Static output is possible.	High impedance	I - D
S9		_		For segment output Can withstand high voltage Static output is possible		
S0 -S8			Note 2	For segment output Can withstand high voltage	Low level	I - E
PPO	Output	_	Puls	e output by timer/pulse generator	High impedance	D
TI0	Input	P13	Exte	rnal event pulse input to timer event counter		B
SCK	I/O	P01	Inpu	t and output to serial clock	Input	F
so	I/O	P02	Seria	al data output or serial data input and output	Input	G
SI	Input	P03	Seria	al data input or normal input	Input	B
INT4	Input	P00	"	Edge detection vectored interrupt input (detected at both rising edge and falling edge)		B
INT0	Input	P10/V _{PP}	Edge	Edge detection vectored interrupt input with noise		B
INT1	- Iliput	P11	elim	elimination function (edge-detection selectable)		
INT2	Input	P12	1	Testable input for edge-detection (detected at rising edge)		B
BUZ	I/O	P23		Fixed frequency output (For buzzer or system clock trimming)		E
X1, X2	Input	_	syste	tal/ceramic resonator connection for main em clock generation. When external clock al is used, it is applied to X1, and its reverse se signal is applied to X2.	_	_
XT1	Input	_	Whe	tal connection for subsystem clock generation. on external clock signal is used, it is applied to	_	_
XT2	- Innut			and XT2 is open.		(n)
RESET	Input	_		em reset input (low-level active)	_	B
MD0 - MD3	I/O	P30 - P33		ration mode selection during the PROM e/verify cycles.	_	E
V_{PP}		P10/INT0		+12.5 V is applied as the programming voltage during the PROM write/verify cycles		B
VLOAD		_	1	Pull-down resistor connection of FIP controller/driver		I - E
VDD		_	+6 V	Positive power supply +6 V is applied as the programming voltage during the PROM write/verify cycles		_
Vss		_	GND	potential	_	_
NC Note 4		_	No c	connection	_	_

- Note 1. The circle (\bigcirc) indicates the Schmitt triggered input.
 - 2. Pull-down resistor is incorporated.
 - 3. Open-drain output
 - **4.** NC pin should be connected to V_{PRE} when sharing print board with the $\mu PD75216A$.

Fig. 1-1 Pin Input/Output Circuit

1.3 TREATMENT OF UNUSED PINS

Table 1-2 Recommended Connection for Unused Pins

Pin	Recommended connection
P00/INT4	Connect to Vss
P01/SCK	
P02/SO	Connect to Vss or VDD
P03/SI	
P10/INT0/VPP	
P11/INT1, P12/INT2	Connect to Vss
P13/T10	
P20 - P22	
P23/BUZ	
P30/MD0 - P33/MD3	Input: Connect to Vss or VDD
P40 - P43	Output: Open
P50 - P53	
P60 - P63	
PPO	
S0 - S9	
T15/S10, T14/S11	Open
T0 - T9	
T10/S15/PH3-T13/S12/PH0	
XT1	Connect to Vss or VDD
XT2	Open

2. DIFFERENCES BETWEEN THE μ PD75P216A AND THE μ PD75216A, μ PD75208

Table 2-1 Differences between the μ PD75P216A and the μ PD75216A, μ PD75208

Parameter		μPD75P216A	μPD75216A	μPD75208	
		One-time PROM	Mask ROM		
ROM	1	16256 × 8 bits (0000H – 3F7FH)		8064 × 8 bits (0000H – 1F7FH)	
RAN	1	512 × 4 bits		497 × 4 bits	
FIP [®] Control	ler Driver	9 – 16 segments		9 – 12 segments	
	Port 6	N/A			
Pull-Down Registor	S0 – S8, T0 – T9	On-chip	Mask option		
	S9, T10 – T15	N/A (Open-drain)			
Power-On	Reset	N/A	Mask option		
Power-O	n Flag	N/A			
		P10/INT0/V _{PP}	P10/INT0		
Pin Conn	ection	P30/MD0 – P33/MD3	P30 -	- P33	
		NC	Vı	PRE	
Operating Ambier	nt Temperature	−10 to +70 °C	–40 to	+85 °C	
Operating Supply Voltage		5 V ± 10 %	2.7 to 6.0 V		
Package		64-pin plastic shrink DIP (750 mil)	64-pin plastic shrink DIP (750 mil 64-pin plastic QFP (14 × 20 mm)		

3. ONE-TIME PROM (PROGRAM MEMORY) WRITE AND VERIFY

The μ PD75P216A contains 16256 \times 8 bits of one-time PROM available of writing. The following table shows the pin functions during the write and verify cycles. Note that it is not necessary to enter an address, because the address is updated by pulsing the X1 clock pins.

Table 3-1 Used Pin at PROM Write and Verify

Pin name	Function
Vpp	Voltage application pin for write and verify (Normally VDD potential)
X1, X2	Address-update clock input during write/verify. The inverted signal of the X1 should be input to the X2.
MD0 - MD3	Operation mode selection pins for write and verify
P40 - P43 (lower 4 bits) P50 - P53 (higher 4 bits)	8-bit data input/output pins for write and verify
V _{DD}	Supply voltage application pin Normally 5 V ± 10 %; 6 V is applied during write/verify

Caution 1. The pins which are not used during write or verify should be treated as follows

- Port, XT1, RESET ... Connect to Vss through pull-down resistors
- S0 to S9, T0 to T15, PPO, VLOAD ... Connect to VDD through pull-up resistors
- XT2 ... Open
- 2. The μ PD75P216A do not have a UV erase window, thus the PROM contents cannot be erased with ultra violet ray.

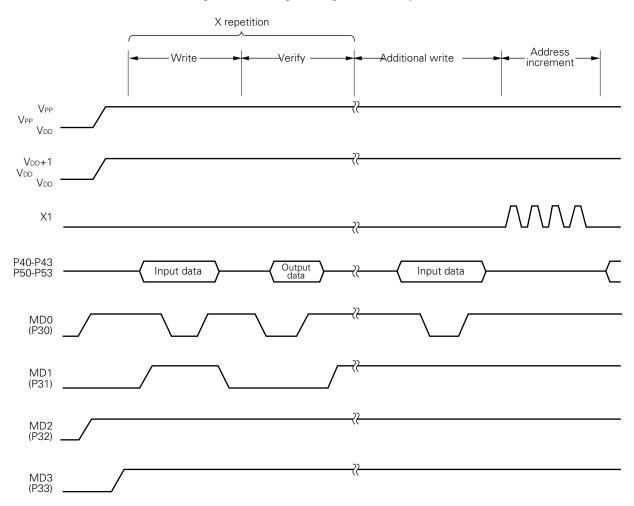
3.1 PROM WRITE AND VERIFY OPERATION

When +6 V and +12.5 V are applied to the V_{DD} and V_{PP} pins, respectively, the PROM is placed in the write/verify mode. The operation is selected by the MD0 to MD3 pins, as shown in the table.

Table 3-2 PROM Write and Verify Operation

	Оре	ration mod	0					
V _{PP}	V _{DD}	MD0	MD1	MD2	MD3	Operation mode		
+12.5	+6 V	Н	L	Н	L	Clear program memory address to 0		
		L	Н	Н	Н	Write mode		
		L	L	Н	Н	Verify mode		
		Н	×	Н	Н	Program inhibit mode		

 $[\]times$: Don't care.

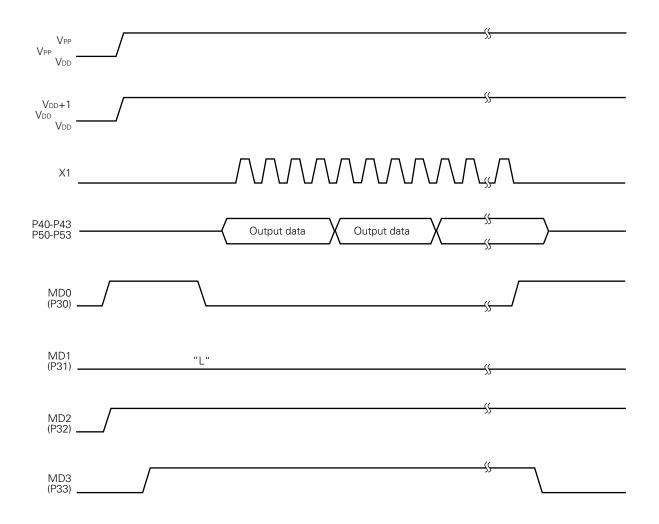


3.2 PROM WRITE PROCEDURE

PROM can be written at high speed using the following procedure: (see the following figure)

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 volts to the VDD and VPP pins.
- (3) Wait for 10 μ s.
- (4) Select the zero clear program memory address mode.
- (5) Supply 6 volts to the V_{DD} and 12.5 volts to the V_{PP} pins.
- (6) Select the program inhibit mode.
- (7) Write data in the 1 ms write mode.
- (8) Select the program inhibit mode.
- (9) Select the verify mode. If the data is correct, proceed to step (10). If not repeat steps (7), (8) and (9).
- (10) Perform one additional write (duration of 1ms × number of writes at (7) to (9)).
- (11) Select the program inhibit mode.
- (12) Apply four pulses to the X1 pin to increment the program memory address by one.
- (13) Repeat steps (7) to (12) until the end address is reached.
- (14) Select the zero clear program memory address mode.
- (15) Return the VDD and VPP pins back to + 5 volts.
- (16) Turn off the power.

Fig. 3-1 Timing of Program Memory Write



3.3 PROM READ PROCEDURE

The PROM contents can be read in the verify mode by using the following procedure: (see the following figure)

- (1) Pull unused pins to Vss through resistors. Set the X1 pin low.
- (2) Supply 5 volts to the VDD and VPP pins.
- (3) Wait for 10 μ s.
- (4) Select the zero clear program memory address mode.
- (5) Supply 6 volts to the V_{DD} and 12.5 volts to the V_{PP} pins.
- (6) Select the program inhibit mode.
- (7) Select the verify mode. Apply four pulses to the X1 pin. Every four clock pulses will output the data stored in one address.
- (8) Select the program inhibit mode.
- (9) Select the zero clear program memory address mode.
- (10) Return the VDD and VPP pins back to + 5 volts.
- (11) Turn off the power.

Fig. 3-2 Timing of Program Memory Read

4. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (Ta = 25 °C)

Parameter	Symbol	Conditions	Ratings	Unit
	V _{DD}		-0.3 to +7.0	V
Supply voltage	VLOAD		V _{DD} -40 to V _{DD} + 0.3	V
	V _{PP}		-0.3 to +13.5	V
Input voltage	Vı		-0.3 to V _{DD} +0.3	V
Output voltage	Vo	Other than display pins	-0.3 to V _{DD} +0.3	V
Output voltage	Vod	Display pins	V_{DD} –40 to V_{DD} + 0.3	V
		Single pin; other than display pins	-15	mA
		Single pin; S0 – S9	-15	mA
High-level output current	Іон	Single pin; T0 – T15	-30	mA
		Total of all pins other than diplay	-20	mA
		Total of all display pins	-120	mA
		Single pin	17	mA
Low level output current	Іоь	Total of all pins	60	mA
Operating temperature	Topt		-10 to +70	°C
Storage temperature	Tstg		-65 to +150	°C

Operating Supply Voltage ($T_a = -10 \text{ to } + 70 \, ^{\circ}\text{C}$)

Parameter	Conditions	MIN.	MAX.	Unit
CPU Note		4.5	5.5	V
Display controller		4.5	5.5	V
Timer/pulse generator		4.5	5.5	V
Other hardwares Note		4.5	5.5	V

Note Except system clock oscillation circuit, display controller, timer/pulse generator.

Main System Clock Configurations ($T_a = -10 \text{ to } +70 ^{\circ}\text{C}$, $V_{DD} = 5 \text{ V} \pm 10 ^{\circ}\text{M}$)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Coramic	X1 X2	Oscillation frequency (fxx)	V _{DD} = Oscillator operating voltage range	2.0		5.0 Note 3	MHz
Ceramic resonator	C1C2	Note 2 Oscillation stabilization time	After VDD reaches the minimum oscillator operating voltage range			4	ms
Crystal resonator	X1 X2 C1 C2	Oscillation frequency (fxx)		2.0	4.19	5.0 Note 3	MHz
		Note 2 Oscillation stabilization time				10	ms
External clock	X1 X2 μPD74HCU04	X1 input frequency (fx)		2.0		5.0 Note 3	MHz
		X1 input high- and low-level width (txH, txL)		100		250	ns

Subsystem Clock Configurations (T_a = -10 to +70 $^{\circ}$ C, V_{DD} = 5 V \pm 10 %)

Resonator	Recommended constants	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	XT1 XT2	Note 1 Oscillation frequency (fxt)		32	32.768	35	kHz
Crystal resonator	C3C4	Oscillation stabilization time			1	2	s
External clock	XT1 XT2 Open	XT1 input frequency (fxt)		32		100	kHz
		X1 input high- and low-level width (txth, txtl)		10		32	μs

- **Note 1.** The oscillation frequency and input frequency only indicate the characteristics of the oscillation circuit. Refer to the AC characteristics for the instruction execution time.
 - 2. The oscillation stabilization time is the time until the oscillation enters a stable state after the application of VDD or the release of STOP mode.
- **3.** When the oscillation frequency is $4.19 < fx \le 5.0$ MHz, PCC = 0011 should not be selected as the instruction execution time. If PCC = 0011 is selected, 1 machine cycle is less than the specified minimum value, which is 0.95 μ s.

Capacitance (T_a = 25 °C, V_{DD} = 0 V)

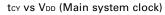
Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance		Cin				15	pF
Output capacitance disp	Other than display output	Соит	f = 1 MHz			15	pF
	Display output	Cour	Unmeasured pins returned to 0 V			35	pF
Input/Output capacitance		Сю				15	pF

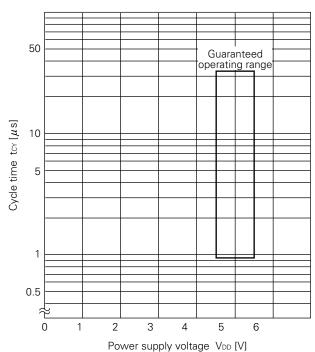
DC Characteristics (T_a = -10 to +70 $^{\circ}$ C, V_{DD} = 5 V \pm 10 %)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
	V _{IH1}	All except ports 0, 1, 6, X1, X2, XT1, RESET				V _{DD}	٧
High lovel input veltage	V _{IH2}	Port 0, 1 RESET	0.75 VDD		V _{DD}	V	
High-level input voltage	VIH3	X1, X2, XT1		V _{DD} -0.4		V _{DD}	V
	V _{IH4}	Port 6		0.65 VDD		V _{DD}	V
	V _{IL1}	All except ports 0, 1,	6, X1, X2, XT1, RESET	0		0.3 V _{DD}	٧
Low-level input voltage	V _{IL2}	Port 0, 1, 6 RESET		0		0.2 V _{DD}	٧
	VIL3	X1, X2, XT1		0		0.4	٧
I link lavel avenue valence		All autouta	Iон = −1 mA	V _{DD} -1.0			V
High-level output voltage	Vон	All outputs	Іон = –100 μΑ	V _{DD} -0.5			V
	.,	Port 4, 5	IoL = 15 mA		0.4	2.0	V
Low-level output voltage	Vol	All outputs	IoL = 1.6 mA			0.4	V
High-level input leakage	Ішн1	All except X1, X2, XT1				3	μΑ
current	I _{LIH2}	X1, X2, XT1	$V_{I} = V_{DD}$			20	μΑ
Low-level input leakage	ILIL1	All except X1, X2, XT1	., .,			-3	μΑ
current	ILIL2	X1, X2, XT1	V1 = 0 V			-20	μΑ
High-level output leakage current	Ісон	All outputs	Vo = Vdd			3	μΑ
Low-level output leakage	ILOL1	All except display output	Vo = 0 V			-3	μΑ
current	ILOL2	Display outputs	Vo = VLOAD = VDD - 35 V			-10	μΑ
D: 1		S0 - S9	V V 0V	-3	-5.5		mA
Display output current	Іод	T0 - T15	$V_{OD} = V_{DD} - 2 V$	-15	-22		mA
On-chip pull-down resistor	R∟	Display outputs	Vod – Vload = 35 V	25	70	135	kΩ
	I _{DD1}	4.19 MHz	Note 2		3.0	9.0	mA
	I _{DD2}	Crystal oscillator C1 = C2 = 15 pF	HALT mode		600	1 800	μΑ
Power supply current Note 1	IDD3	32.768 kHz Note 3			100	300	μΑ
	I _{DD4}	Crystal oscillator	HALT mode		40	100	μΑ
	I _{DD5}	XT1 = 0 V	STOP mode		0.5	20	μΑ

Note 1. Does not include the current for the on-chip pull-down resistor (output circuit to S0 to S8, T0 to T9).

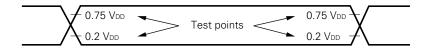
- 2. When the processor clock control register (PCC) is set to 0011 and operated in high-speed mode.
- 3. When the system clock control register (SCC) is set to 1001 to stop the main system clock, and when the sub-system clock is used.

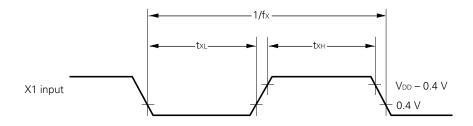

AC Characteristics (T_a = -10 to +70 °C, V_{DD} = +5 V \pm 10%)

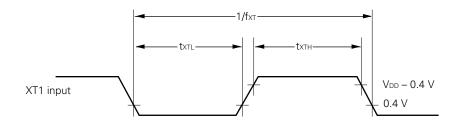

main system clock.

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU clock time Note 1 (minimum instruction	Main system clock		0.95		32	μs	
execution time = 1 machine cycle)	LCY	Subsystem clock		114	122	125	μs
TIO input frequency	fπı			0		0.6	MHz
TI0 input high- and low-level width	tтін, tтіL			0.83			μs
CCV avala tima	tĸcy		Input	0.8			μs
SCK cycle time	LKCY		Output	0.95			μs
	4		Input	0.4			μs
SCK high- and low-level width	tkH, tkL		Output	tксу/2-50			ns
SI setup time (to SCK ↑)	t sık			100			ns
SI hold time (to SCK ↑)	t ksı			400			ns
$\overline{SCK} \downarrow \to SO$ output delay time	t kso					300	ns
			INT0	Note 2			μs
Interrupt inputs high- and low-level width	tinth, tintl		INT1	2tcy			μs
			INT2, 4	10			μs
RESET low-level width	t RSL			10			μs

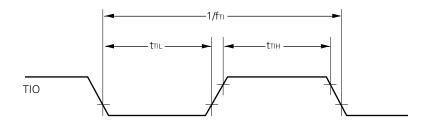
- Note 1. The CPU clock (Ø) cycle time is decided by the oscillation frequency of the resonator, system clock control register (SCC), and processor clock control register (PCC).


 The figure to the right indicates cycle time (tcy) characteristics for supply voltage VDD when using the
 - 2. This is 2tcy or 128/fxx according to the interrupt mode register setting (IM0).

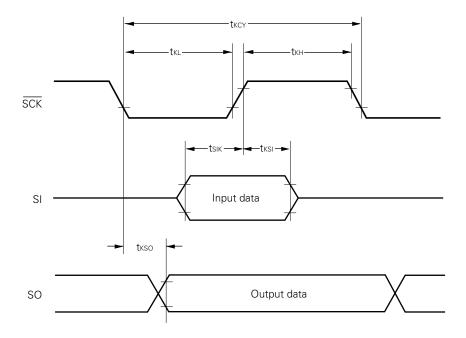




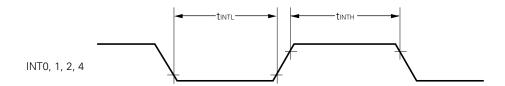
AC timing Test Point (Except X1, XT1)

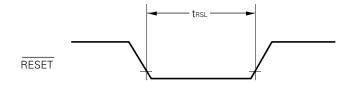


Clock Timing



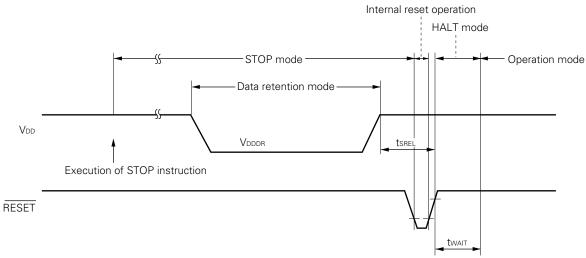
TIO Timing



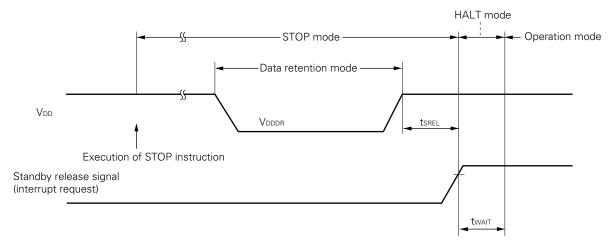

Serial Transfer Timing

Interrupt Input Timing

RESET Input Timing


Data Memory STOP Mode Low Voltage Data Retention Characteristics ($T_a = -10 \text{ to } +70 \text{ }^{\circ}\text{C}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention voltage	VDDDR		2.0		5.5	٧
Data retention current	IDDDR	VDDDR = 2.0 V		0.1	10	μΑ
Released signal SET time	t srel		0			μs
Note 1	twait	Released by RESET input		2 ¹⁷ /fx		ms
Oscillation stabilization time		Released by interrupt request		Note 2		ms


- **Note 1.** The oscillation stabilization wait time is a period during which the CPU is kept inactive in order to avoid unstable operation at the start of oscillation.
 - 2. Depends on the setting of the basic interval time mode register (BTM) (see the following table).

ВТМ3	BTM2	BTM1	BTM0	Wait time (): fxx = 4.19 MHz
_	0	0	0	2 ²⁰ /fxx (approx. 250 ms)
_	0	1	1	2 ¹⁷ /fxx (approx. 31.3 ms)
_	1	0	1	2 ¹⁵ /fxx (approx. 7.82 ms)
_	1	1	1	2 ¹³ /fxx (approx. 1.95 ms)

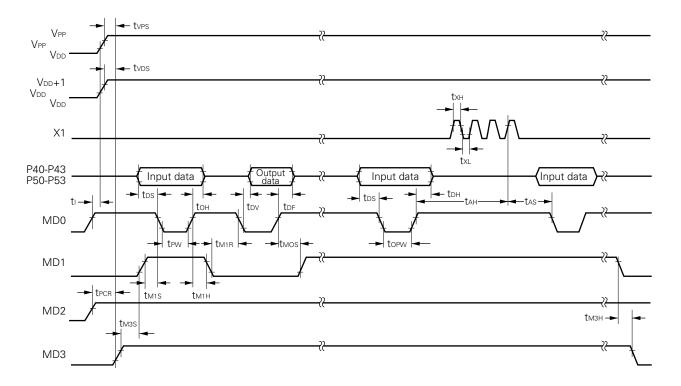
Data Retention Timing (STOP mode is released by RESET input)

Data Retention Timing (Standby release signal: STOP mode is released by interrupt signal)

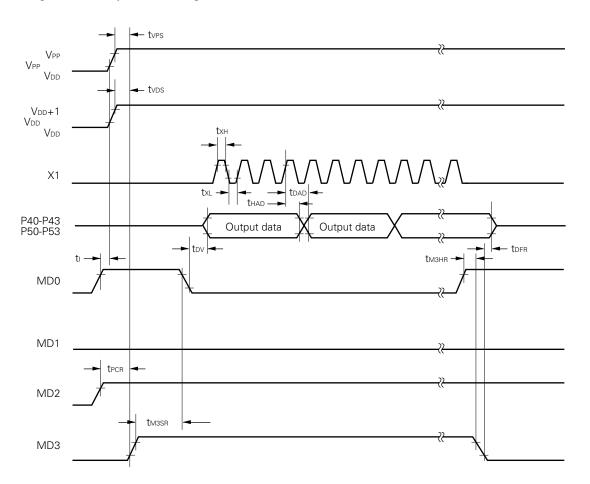
DC Programming Characteristics (Ta = 25 \pm 5 °C, Vdd = 6.0 \pm 0.25 V, Vpp = 12.5 \pm 0.3 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High land in motor land	V _{IH1}	All except X1, X2	0.7 V _{DD}		V _{DD}	V
High-level input voltage	V _{IH2}	X1, X2	V _{DD} -0.5		V _{DD}	V
Low-level input voltage	V _{IL1}	All except X1, X2	0		0.3 V _{DD}	V
	V _{IL2}	X1, X2	0		0.4	V
Input leakage current	I _{L1}	VIN = VIL OF VIH			10	μΑ
High-level output voltage	Vон	Iон = −1 mA	V _{DD} -1.0			V
Low-level output voltage	Vol	IoL = 1.6 mA			0.4	V
V _{DD} power supply current	loo				30	mA
VPP power supply current	IPP	MD0 = VIL, MD1 = VIH			30	mA

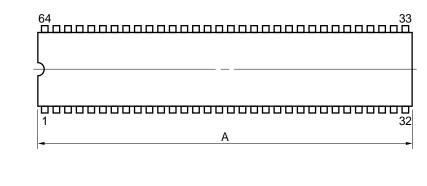
- Note 1. VPP should not exceed +22 V (including overshoot).
 - 2. Vdd should be applied before Vpp and turned off after Vpp.

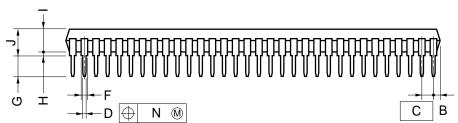

AC Programming Characteristics (Ta = 25 \pm 5 °C, Vdd = 6.0 \pm 0.25 V, Vpp = 12.5 \pm 0.3 V, Vss = 0 V)

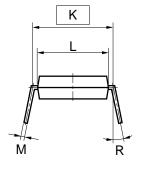
Parameter	Symbol	Note 1	Conditions	MIN.	TYP.	MAX.	Unit
Address setup time Note 2 (toMD0↓)	tas	tas		2			μs
MD1 setup time (to MD0↓)	tмıs	toes		2			μs
Data setup time (to MD0↓)	tos	tos		2			μs
Address hold time Note 2 (from MD01)	tан	tан		2			μs
Data hold time (from MD0 [↑])	t DH	tон		2			μs
MD0 \uparrow \rightarrow data output float delay time	t DF	t DF		0		130	ns
V _{PP} setup time (to MD3↑)	tvps	tvps		2			μs
V _{DD} setup time (to MD3↑)	tvos	tvcs		2			μs
Initialized program pulse width	tpw	tpw		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (to MD1↑)	tмоs	tces		2			μs
MD0 \downarrow $ ightarrow$ data output delay time	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 hold time (from MD0↑)	tмін	tоен	tмін + tміr ≥ 50 <i>μ</i> s	2			μs
MD1 recovery time (to MD0↓)	t MIR	tor	tMiH + tMiR ≥ 50 μS	2			μs
Program counter reset time	t PCR	_		10			μs
X1 input high- and low-level width	tхн, tхL	_		0.125			μs
X1 input frequency	fx	_				4.19	MHz
Initial mode set time	tı	_		2			μs
MD3 setup time (to MD1↑)	tмзs	_		2			μs
MD3 hold time (from MD1↓)	tмзн	_		2			μs
MD3 setup time (to MD0↓)	t m3SR	_	During program read cycle	2			μs
Address Note 2 → Data output delay time	t DAD	tacc	During program read cycle	2			μs
Address $^{\text{Note 2}} \rightarrow \text{Data output hold time}$	t had	tон	During program resd cycle	0		130	ns
MD3 hold time (from MD0 [↑])	tмзнг	_	During program read cycle	2			μs
MD3 \downarrow \rightarrow data output float delay time	t DFR	_	During program read cycle	2			μs


- **Note 1.** Symbol of corresponding μ PD27C256.
 - 2. Internal address is incremented by 1 at the rising edge of the fourth X1 input. This address signal is not output to external pins.

Program Memory Write Timing


Program Memory Read Timing





5. PACKAGE DRAWINGS

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTE

- 1) Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
Α	58.68 MAX.	2.311 MAX.
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	19.05 (T.P.)	0.750 (T.P.)
L	17.0	0.669
М	0.25 ^{+0.10} _{-0.05}	0.010+0.004
N	0.17	0.007
R	0~15°	0~15°

P64C-70-750A,C-1

6. RECOMMENDED SOLDERING CONDITIONS

 \star

The following conditions must be met when soldering this product.

For more details, refer to our document "SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL" (IEI-1207).

Please consult with our sales offices in case other soldering process is used, or in case other soldering is done under different conditions.

Table 6-1 Type of Through Hole Device

 μ PD75P216ACW: 64-pin plastic shrink DIP (750 mil)

Soldering process	Soldering conditions				
Wave soldering (only lead part)	Solder temperature: 260 °C or lower, Flow time: 10 seconds or less				
Partial heating method	Pin temperature: 260 °C or lower, Time: 10 seconds or less				

Caution This wave soldering should be applied only to lead part, and don't jet molten solder on the surface of package.

★ APPENDIX DEVELOPMENT TOOLS

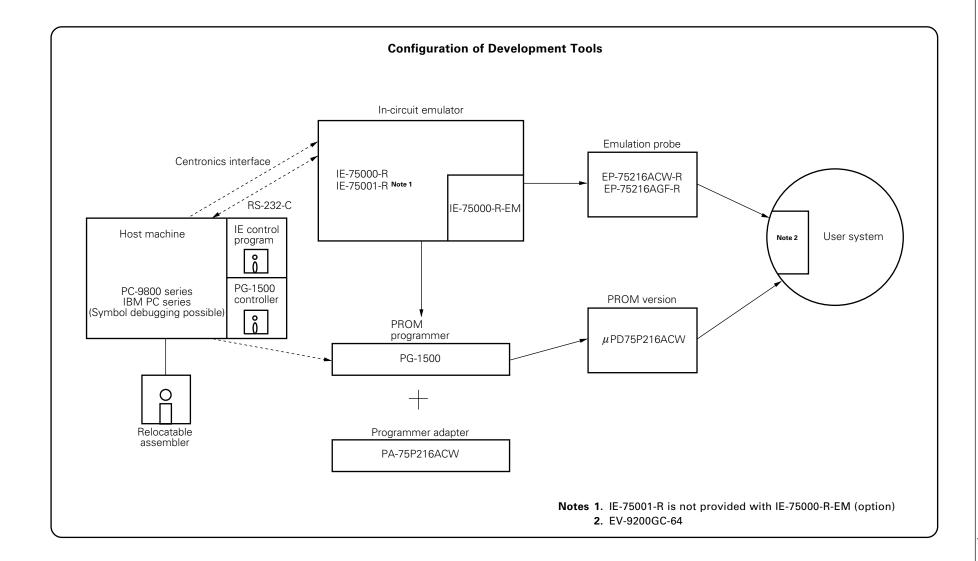
The following development tools are provided for the development of a system which employs the $\mu PD75P216A$.

Language processor

RA75X relocatable assembler	Host machine	Part number		
		os	Distribution media	
	PC-9800 series	MS-DOS™ / Ver. 3.10 \	3.5-inch 2HD	μS5A13RA75X
		ver. 3.30C	5-inch 2HD	μS5A10RA75X
	IBM PC series	PC DOS™ (Ver. 3.1)	5-inch 2HC	μS7B10RA75X

PROM programming tools

Hardware	PG-1500	The PG-1500 PROM programmer is used together with an accessor board and optional programmer adapter. It allows the user to prog single chip microcomputer containing PROM from a standalone ter or a host machine. The PG-1500 can be used to program typical 25 to 4M-bit PROMs.								
	PA-75P216ACW	PROM programmer adapter dedicated to μ PD75P216ACW. Connect the programmer adapter to PG-1500 for use.								
	AF-9703 AF-9704	PROM programmer produced by Ando Electric Corp.								
	AF-9789	Programmer adapter dedicated to the μPD75P216ACW Connect to AF-9703, AF-9704 for use								
	UNISITE 2900 3900	PROM programmer produced by Data I/O Japan Corp.								
	PPI-0601	"	pter dedicated to ITE, 2900, 3900 fo	the μPD75P216ACW r use						
Software	PG-1500 controller	This program en the serial and pa		chine to control the PC	G-1500 through					
		Host machine			Part number					
			os	Distribution media						
		PC-9800 series	MS-DOS / Ver. 3.10 \	3.5-inch 2HD	μS5A13PG1500					
			ver. 3.30C	5-inch 2HD	μS5A10PG1500					
		IBM PC series	PC DOS (Ver. 3.1)	5-inch 2HC	μS7B10PG1500					



Debugging tools

Hardware	IE-75000-R Note	The IE-75000-R is an in-circuit emulator to debug the hardware and software at developing application system for 75X series. This emulator is used together with the emulation probe. For efficient debugging, the emulator is connected to the host machine and PROM programmer.						
	IE-75000-R-EM	The IE-75000-R-EM is an emulation board for the IE-75000-R and IE-75001-R. The IE-75000-R contains the emulation board. The emulation board is used together with the IE-75000-R or IE-75001-R to evaluate the μ PD75P048.						
	IE-75001-R	software at deve This emulator is (option) and emu	The IE-75001-R is an in-circuit emulator to debug the hardware and software at developing application system for 75X series. This emulator is used together with the IE-75000-R-EM emulation board (option) and emulation probe. For efficient debugging, the emulator is connected to the host machine and PROM programmer.					
	EP-75216ACW-R			6ACW. -R or IE-75001-R and t	he			
Software	IE control program			chine to control the IE rough the RS-232-C in				
		Host machine			Part number			
			os	Distribution media				
		PC-9800 series	MS-DOS / Ver. 3.10 \	3.5-inch 2HD	μS5A13IE75X			
			to Ver. 3.30C	5-inch 2HD	μS5A10IE75X			
		IBM PC series	PC DOS (Ver. 3.1)	5-inch 2HC	μS7B10IE75X			

Notes Provided only for maintenance purposes.

Remark NEC is not responsible for the IE control program operation unless it runs on any host machine with the operation system listed above.

NOTES FOR CMOS DEVICES

1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to $V_{\rm DD}$ or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIAIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

"µPD75216A USER'S MANUAL" (IEM-988F) is also prepared for this product (option).

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6

FIP[®] is a trademark of NEC Corporation.
MS-DOS TM is a trademark of Microsoft Corporation.
PC DOS TM is a trademark of IBM Corporation.