DATA SHEET

MOS INTEGRATED CIRCUIT μ**PD78081(A), 78082(A)**

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

NEC

The μ PD78081(A) and 78082(A) are members of the μ PD78083 Subseries of the 78K/0 Series microcontrollers. These products are produced with a more stringent quality assurance program than that of the μ PD78081 and 78082 (standard models) (NEC classifies these products as "special products" by quality grade).

Besides a high-speed, high-performance CPU, these microcontrollers have on-chip ROM, RAM, I/O ports, 8-bit resolution A/D converter, timer, serial interface, interrupt control, and other peripheral hardware.

The μ PD78P083(A) including a one-time PROM version which can operate in the same power supply voltage range as a mask ROM version, and various development tools are available.

The details of the functions are described in the following User's Manuals. Be sure to read the documents before starting design.

μ PD78083 Subseries User's Manual	: IEU-1407
78K/0 Series User's Manual Instructions	: IEU-1372

FEATURES

Internal ROM and RAM

Item Part Number	Program Memory (ROM)	Data Memory (Internal High-speed RAM)	Package
μPD78081(A)	3081(A) 8 Kbytes 256 bytes		44-pin plastic QFP (10 \times 10 mm)
μPD78082(A)	16 Kbytes	384 bytes	

- Minimum instruction execution time can be changed from high-speed (0.4 μ s) to low-speed (12.8 μ s)
- I/O ports: 33
- 8-bit resolution A/D converter : 8 channels
- Serial interface : 1 channel
 3-wire serial I/O/UART mode : 1 channel
- Timer : 3 channels
- Supply voltage : VDD = 1.8 to 5.5 V

APPLICATION FIELDS

Controllers for automobile electronic control systems, gas detector circuit-breakers, various types of safety equipment, etc.

In addition to the μ PD78081(A) and 78082(A), this Data Sheet also describes the μ PD78081(A2). Unless otherwise specified, however, the μ PD78081(A) and 78082(A) are used throughout this Data Sheet as the representative products, and their descriptions also apply to the μ PD78081(A2).

The information in this document is subject to change without notice.

ORDERING INFORMATION

Part Number	Package
μPD78081GB(A)-×××-3B4 μPD78081GB(A)-×××-3BS-MTX ^{Note} μPD78082GB(A)-×××-3B4 μPD78082GB(A)-×××-3BS-MTX ^{Note} μPD78081GB(A2)-×××-3B4	44-pin plastic QFP ($10 \times 10 \text{ mm}$) 44-pin plastic QFP ($10 \times 10 \text{ mm}$) 44-pin plastic QFP ($10 \times 10 \text{ mm}$) 44-pin plastic QFP ($10 \times 10 \text{ mm}$) 44-pin plastic QFP ($10 \times 10 \text{ mm}$)

Note Under planning

Caution μ PD78081GB(A) and 78082GB(A) have two kinds of package (Refer to 11. PACKAGE DRAWINGS). Please consult NEC's sales representative for the available package.

Remark ××× indicates ROM code suffix.

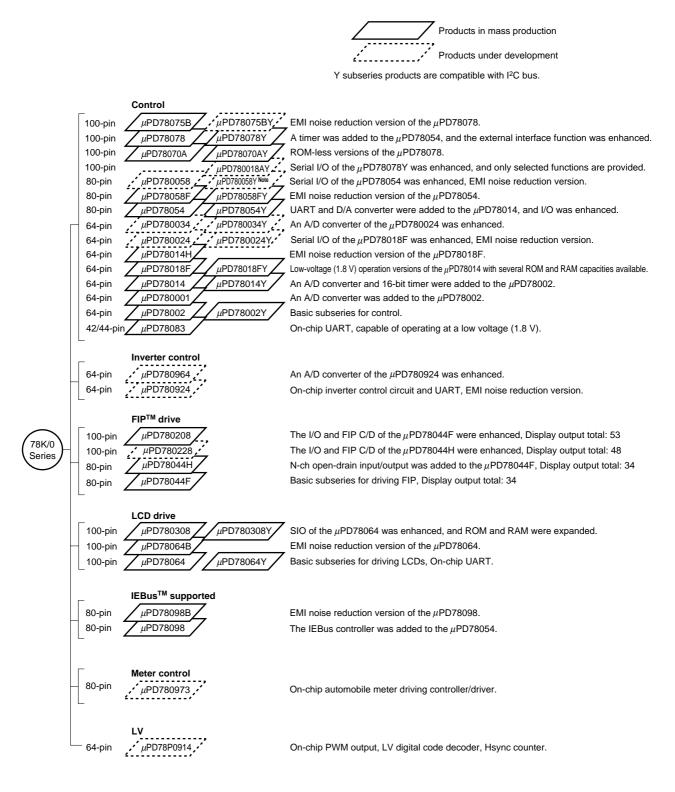
QUALITY GRADE

Special

Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

DIFFERENCES BETWEEN μ PD78081 AND 78082, AND μ PD78081(A) AND 78082(A)

Part Number	μPD78081, 78082	μPD78081(A), 78082(A)
Item		
Quality grade	Standard	Special
Package	 42-pin plastic shrink DIP (600 mil) 44-pin plastic QFP (10 × 10 mm) 	44-pin plastic QFP (10 \times 10 mm)


DIFFERENCES BETWEEN µPD78081(A) AND 78081(A2)


Part Number	μPD78081(A)	μPD78081(A2)
Item		
Supply voltage	VDD = 1.8 to 5.5 V	$V_{DD} = 5 V \pm 10\%$
Minimum instruction execution time	0.4 μs (at 5 MHz)	0.57 μs (at 7 MHz)
Operating ambient temperature	$T_{A} = -40 \text{ to } 85^{\circ}\text{C}$	$T_A = -40 \text{ to } +125^{\circ}\text{C}$

Remark In addition to the above parameters, the supply current also differs. For details, refer to 10. ELECTRICAL SPECIFICATIONS.

78K/0 SERIES DEVELOPMENT

The following shows the 78K/0 Series products development. Subseries names are shown inside frames.

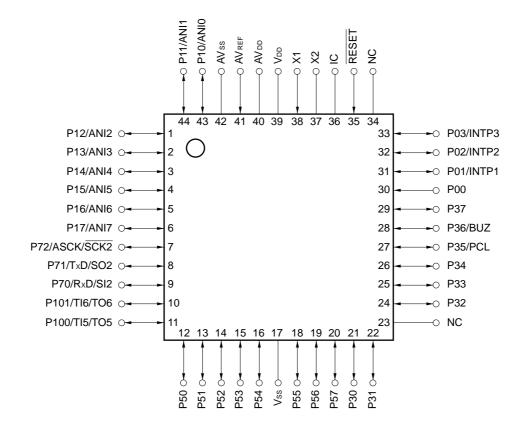
	Function	ROM		Tir	ner		8-bit	10-bit	8-bit	Serial Interface	I/O	Vdd MIN.	External
Subseries	Name	Capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A			Value	Expansion
Control	μPD78075B	32 K to 40 K	4ch	1ch	1ch	1ch	8ch	_	2ch	3ch (UART: 1ch)	88	1.8 V	Available
	μPD78078	48 K to 60 K								, , ,			
	μPD78070A	-									61	2.7 V	
	μPD780058	24 K to 60 K	2ch	1					2ch	3ch (time-division UART: 1ch)	68	1.8 V	
	μ PD78058F	48 K to 60 K								3ch (UART: 1ch)	69	2.7 V	
	μPD78054	16 K to 60 K										2.0 V	
	μPD780034	8 K to 32 K					_	8ch	-	3ch (UART: 1ch,	51	1.8 V	
	μPD780024						8ch	-		time-division 3-wire: 1ch)			
	μPD78014H									2ch	53		
	μPD78018F	8 K to 60 K											
	μPD78014	8 K to 32 K										2.7 V	
	μPD780001	8 K		-	_					1ch	39		-
	μPD78002	8 K to 16 K			1ch						53		Available
	μPD78083				-		8ch			1ch (UART: 1ch)	33	1.8 V	-
Inverter	μPD780964	8 K to 32 K	3ch	Note	-	1ch		8ch	-	2ch (UART: 2ch)	47	2.7 V	Available
control	µPD780924						8ch	-					
FIP	µPD780208	32 K to 60 K	2ch	1ch	1ch	1ch	8ch	-	-	2ch	74	2.7 V	-
drive	μPD780228	48 K to 60 K	3ch	-	-					1ch	72	4.5 V	
	μPD78044H	32 K to 48 K	2ch	1ch	1ch						68	2.7 V	
	μPD78044F	16 K to 40 K								2ch			
LCD	μPD780308	48 K to 60 K	2ch	1ch	1ch	1ch	8ch	-	-	3ch (time-division UART: 1ch)	57	2.0 V	-
drive	μPD78064B	32 K								2ch (UART: 1ch)			
	μPD78064	16 K to 32 K											
IEBus	μPD78098B	40 K to 60 K	2ch	1ch	1ch	1ch	8ch	-	2ch	3ch (UART: 1ch)	69	2.7 V	Available
supported	μPD78098	32 K to 60 K											
Meter control	μPD780973	24 K to 32 K	3ch	1ch	1ch	1ch	5ch	_	-	2ch (UART: 1ch)	56	4.5 V	-
LV	μPD78P0914	32 K	6ch	-	-	1ch	8ch	-	-	2ch	54	4.5 V	Available

The following table shows the differences among subseries functions.

Note 10-bit timer: 1 channel

OVERVIEW OF FUNCTION

Part Number Item		μPD78081(A)	μΡD78082(A)				
Internal	ROM	8 Kbytes	16 Kbytes				
memory	Internal high-speed RAM	256 bytes 384 bytes					
Memory sp	bace	64 Kbytes					
General re	gisters	8 bits \times 32 registers (8 bits \times 8 registers :	× 4 banks)				
Minimum ii	nstruction execution time	On-chip minimum instruction execution ti 0.4 μ s/0.8 μ s/1.6 μ s/3.2 μ s/6.4 μ s/12.8 μ s/					
Instruction	set	 16-bit operation Multiply/divide (8 bits × 8 bits,16 bits ÷ 8 bits) Bit manipulation (set, reset, test, boolean operation) BCD adjustment, etc. 					
I/O ports		Total : 33 • CMOS input : 1 • CMOS I/O : 32					
A/D conver	rter	8-bit resolution × 8 channels					
Serial inter	face	3-wire serial I/O/UART mode selectable : 1 channel					
Timer		 8-bit timer/event counter : 2 channels Watchdog timer : 1 channel					
Timer outp	ut	2 (8-bit PWM output)					
Clock outp	ut	19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5.0 MHz (at main system clock of 5.0 MHz)					
Buzzer out	put	1.2 kHz, 2.4 kHz, 4.9 kHz, 9.8 kHz (at ma	ain system clock of 5.0 MHz)				
Vectored	Maskable	Internal : 8, external : 3					
interrupt Non-maskable		Internal : 1					
Software		1					
Supply volt	tage	V _{DD} = 1.8 to 5.5 V					
Operating	ambient temperature	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$					
Package		44-pin plastic QFP (10 \times 10 mm)					


Caution The supply voltage and other parameters of the μ PD78081(A2) differ from those of the other models. For details, refer to "DIFFERENCES BETWEEN μ PD78081(A) AND 78081(A2)".

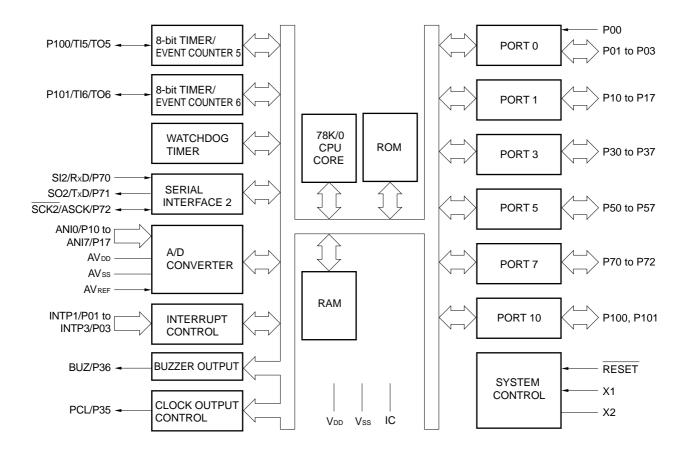
CONTENTS

1.	PIN CONFIGURATION (Top View)	. 7
2.	BLOCK DIAGRAM	. 9
3.	PIN FUNCTIONS	10
	3.1 Port Pins	10
	3.2 Non-port Pins	11
	3.3 Pin I/O Circuits and Recommended Connection of Unused Pins	12
4.	MEMORY SPACE	14
5.	PERIPHERAL HARDWARE FUNCTIONS	15
	5.1 Ports	15
	5.2 Clock Generator	
	5.3 Timer/Event Counter	-
	5.4 Clock Output Control Circuit	
	5.5 Buzzer Output Control Circuit	
	5.6 A/D Converter	
	5.7 Serial Interface	20
6.	INTERRUPT FUNCTIONS	21
7.	STANDBY FUNCTION	24
8.	RESET FUNCTION	24
9.	INSTRUCTION SET	25
10.	ELECTRICAL SPECIFICATIONS	28
11.	PACKAGE DRAWINGS	49
12.	RECOMMENDED SOLDERING CONDITIONS	51
AP	PENDIX A. DEVELOPMENT TOOLS	52
AP	PENDIX B. RELATED DOCUMENTS	54

1. PIN CONFIGURATION (Top View)

 44-pin plastic QFP (10 × 10 mm) μPD78081GB(A)-×××-3B4 μPD78081GB(A)-×××-3BS-MTX ^{Note} μPD78082GB(A)-×××-3B4 μPD78082GB(A)-×××-3BS-MTX ^{Note} μPD78081GB(A2)-×××-3B4

Note Under planning


Cautions 1. Connect IC (Internally Connected) pin directly to Vss.

- 2. Connect AVDD pin to VDD.
- 3. Connect AVss pin to Vss.
- 4. Connect NC (Non-connection) pin to Vss for noise protection (It can be left open).

NEC

ANI0 to ANI7	: Analog Input	P100, P101	: Port10
ASCK	: Asynchronous Serial Clock	PCL	: Programmable Clock
AVdd	: Analog Power Supply	RESET	: Reset
AVREF	: Analog Reference Voltage	RxD	: Receive Data
AVss	: Analog Ground	SCK2	: Serial Clock
BUZ	: Buzzer Clock	SI2	: Serial Input
IC	: Internally Connected	SO2	: Serial Output
INTP1 to INTP3	: Interrupt from Peripherals	TI5, TI6	: Timer Input
NC	: Non-connection	TO5, TO6	: Timer Output
P00 to P03	: Port0	TxD	: Transmit Data
P10 to P17	: Port1	Vdd	: Power Supply
P30 to P37	: Port3	Vss	: Ground
P50 to P57	: Port5	X1, X2	: Crystal (Main System Clock)
P70 to P72	: Port7		

2. BLOCK DIAGRAM

Remark The internal ROM and internal high-speed RAM capacities depend on the product.

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	Input/Output		After Reset	Shared by:	
P00	Input	Port 0	Input only	Input	—
P01	Input/output	4-bit input/output port	Input/output is specifiable	Input	INTP1
P02			bit-wise. When used as the		INTP2
P03			input port, it is possible to		INTP3
			connect a pull-up resistor by		
			software.		
P10 to P17	Input/output	Port 1	•	Input	ANI0 to ANI7
		8-bit input/output port			
		Input/output is specifiab	le bit-wise.		
		When used as the input	port, it is possible to connect		
		a pull-up resistor by sof	ware. Note		
P30 to P34	Input/output	Port 3		Input	_
P35		8-bit input/output port			PCL
P36		Input/output is specifiab	le bit-wise.		BUZ
P37		When used as the input	port, it is possible to connect		—
		a pull-up resistor by sof			
P50 to P57	Input/output	Port 5		Input	_
		8-bit input/output port			
		Can drive up to seven L	EDs directly.		
		Input/output is specifiab	le bit-wise.		
		When used as the input	port, it is possible to connect		
		a pull-up resistor by sof	tware.		
P70	Input/output	Port 7		Input	SI2/RxD
P71		3-bit input/output port			SO2/TxD
P72		Input/output is specifiab	le bit-wise.		SCK2/ASCK
		When used as the input	port, it is possible to connect		
		a pull-up resistor by sof			
P100	Input/output	Port 10		Input	TI5/TO5
P101		2-bit input/output port			TI6/TO6
		Input/output is specifiab	le bit-wise.		
		When used as the input	port, it is possible to connect		
		a pull-up resistor by sof	ware.		

Note When P10/ANI0 to P17/ANI7 pins are used as the analog inputs for the A/D converter, set the port 1 to the input mode. The on-chip pull-up resistor is automatically disabled.

3.2 Non-port Pins

Pin Name	Input/Output	Function	After Reset	Shared by:
INTP1	Input	External interrupt request input by which the active edge	Input	P01
INTP2		(rising edge, falling edge, or both rising and falling edges) can		P02
INTP3		be specified.		P03
SI2	Input	Serial interface serial data input.	Input	P70/RxD
SO2	Output	Serial interface serial data output.	Input	P71/TxD
SCK2	Input/Output	Serial interface serial clock input/output.	Input	P72/ASCK
RxD	Input	Asynchronous serial interface serial data input.	Input	P70/SI2
TxD	Output	Asynchronous serial interface serial data output.	Input	P71/SO2
ASCK	Input	Asynchronous serial interface serial clock input.	Input	P72/SCK2
TI5	Input	External count clock input to 8-bit timer (TM5).	Input	P100/TO5
TI6		External count clock input to 8-bit timer (TM6).		P101/TO6
TO5	Output	8-bit timer (TM5) output.	Input	P100/TI5
TO6		8-bit timer (TM6) output.		P101/TI6
PCL	Output	Clock output. (for main system clock trimming)	Input	P35
BUZ	Output	Buzzer output.	Input	P36
ANI0 to ANI7	Input	A/D converter analog input.	Input	P10 to P17
AV _{REF}	Input	A/D converter reference voltage input.	_	_
AVdd	_	A/D converter analog power supply. Connected to VDD.	_	
AVss	_	A/D converter ground potential. Connected to Vss.	_	
RESET	Input	System reset input.	_	_
X1	Input	Main system clock oscillation crystal connection.	—	—
X2	_		—	_
Vdd	_	Positive power supply.	_	_
Vss	_	Ground potential.		_
IC		Internal connection. Connect directly to Vss.	_	_
NC	_	Does not internally connected. Connect to Vss.		_
		(It can be left open)		

3.3 Pin I/O Circuits and Recommended Connection of Unused Pins

The input/output circuit type of each pin and recommended connection of unused pins are shown in Table 3-1. For the input/output circuit configuration of each type, refer to Figure 3-1.

Pin Name	Input/Output Circuit Type	I/O	Recommended Connection for Unused Pins
P00	2	Input	Connect to Vss.
P01/INTP1	8-A	Input/output	Connect to Vss via a resistor individually.
P02/INTP2			
P03/INTP3			
P10/ANI0 to P17/ANI7	11	Input/output	Connect to VDD or VSS via a resistor individually.
P30 to P32	5-A		
P33, P34	8-A		
P35/PCL	5-A		
P36/BUZ			
P37			
P50 to P57	5-A		
P70/SI2/RxD	8-A		
P71/SO2/TxD	5-A		
P72/SCK2/ASCK	8-A		
P100/TI5/TO5	8-A		
P101/TI6/TO6			
RESET	2	Input	—
AVREF			Connect to Vss.
AVdd]		Connect to VDD.
AVss]		Connect to Vss.
IC			Connect directly to Vss.
NC			Connect to Vss (It can be left open).

Table 3-1. Input/Output Circuit Type of Each Pin

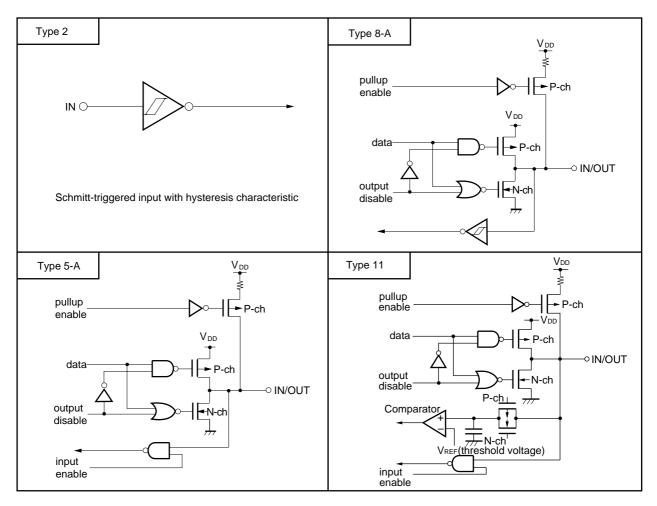


Figure 3-1. Pin Input/Output Circuits

4. MEMORY SPACE

The memory map of the μ PD78081(A) and 78082(A) is shown in Figure 4-1.

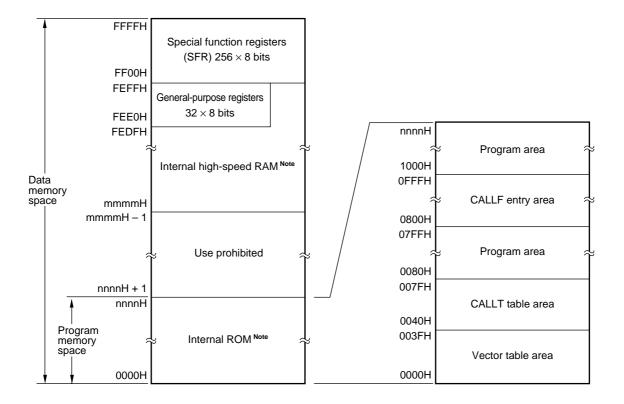


Figure 4-1. Memory Map

Note The internal ROM and internal high-speed RAM capacities depend on the product (See the following table).

Part Number	Internal ROM Last Address nnnnH	Internal High-speed RAM Start Address mmmmH
μPD78081(A)	1FFFH	FE00H
μPD78082(A)	3FFFH	FD80H

5. PERIPHERAL HARDWARE FUNCTIONS

5.1 Ports

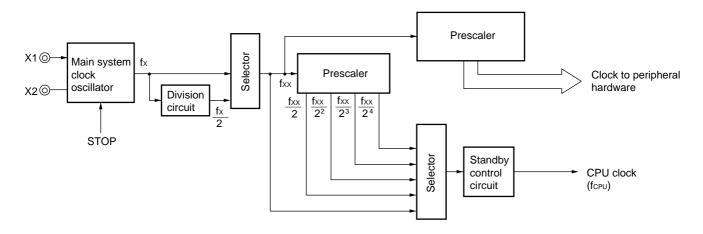
Input/output ports are classified into two types.

• CMOS input (P00) : 1 • CMOS input/output (P01 to P03, Port 1, Port 3, Port 5, Port 7, Port 10) : 32 Total

22
00

Port Name	Pin Name	Function
Port 0	P00	Input only.
	P01 to P03	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.
Port 1	P10 to P17	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.
Port 3	P30 to P37	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.
Port 5	P50 to P57	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software. LED can be driven directly up to 7 pins.
Port 7	P70 to P72	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.
Port 10	P100, P101	Input/output port. Input/output can be specified bit-wise. When used as an input port, on-chip pull-up resistor can be used by software.

Table 5-1. Functions of Ports


5.2 Clock Generator

Main system clock generator is incorporated.

It is possible to change the minimum instruction execution time.

• 0.4 μ s/0.8 μ s/1.6 μ s/3.2 μ s/6.4 μ s/12.8 μ s (at main system clock frequency of 5.0 MHz)

Figure 5-1. Clock Generator Block Diagram

5.3 Timer/Event Counter

There are the following three timer/event counter channels:

- 8-bit timer/event counter : 2 channels
- Watchdog timer : 1 channel

Table 5-2. Types and Functions of Timer/Event Counters

		8-bit Timer/Event Counter 5, 6	Watchdog Timer
Туре	Interval timer	2 channels	1 channel
	External event counter	2 channels	_
Function	Timer output	2 outputs	—
	PWM output	2 outputs	_
	Square wave output	2 outputs	_
	Interrupt request	2	1

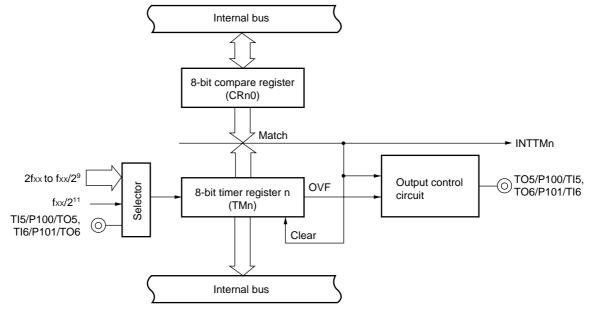
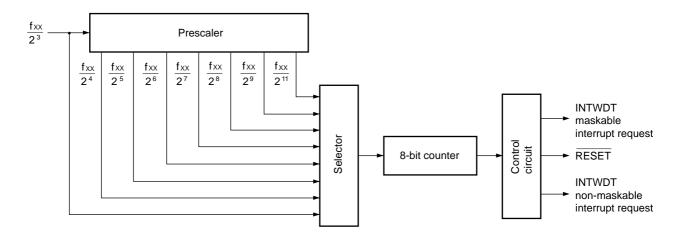
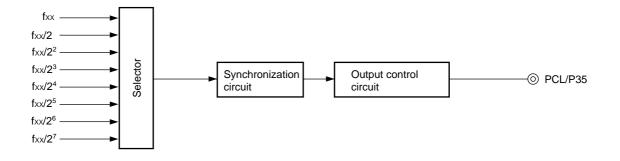



Figure 5-2. 8-Bit Timer/Event Counter 5, 6 Block Diagram



5.4 Clock Output Control Circuit

This circuit can output clocks of the following frequencies:

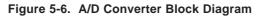
19.5 kHz/39.1 kHz/78.1 kHz/156 kHz/313 kHz/625 kHz/1.25 MHz/2.5 MHz/5.0 MHz (at main system clock frequency of 5.0 MHz)

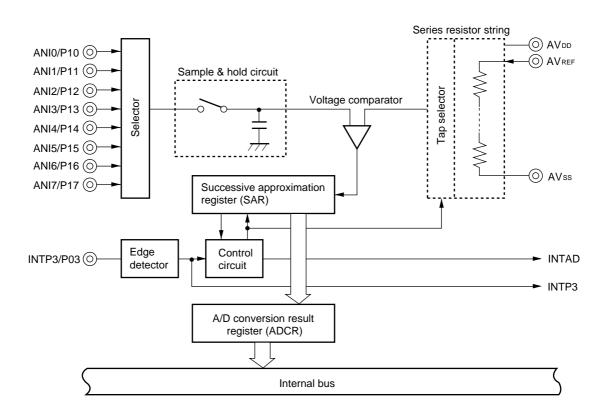
5.5 Buzzer Output Control Circuit

This circuit can output clocks of the following frequencies that can be used for driving buzzers:

• 1.2 kHz/2.4 kHz/4.9 kHz/9.8 kHz (at main system clock frequency of 5.0 MHz)

Figure 5-5. Buzzer Output Control Circuit Block Diagram

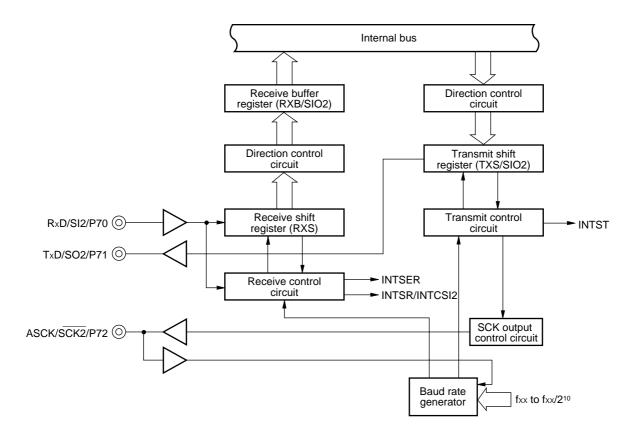

NEC


5.6 A/D Converter

The A/D converter consists of eight 8-bit resolution channels.

A/D conversion can be started by the following two methods:

- Hardware starting
- Software starting


5.7 Serial Interface

There is one on-chip serial interface channel synchronous with the clock.

The serial interface channel 2 operates in the following two modes:

- 3-wire serial I/O mode
 Starting bit MSB/LSB switching possible
- Asynchronous serial interface (UART) mode : On-chip dedicated baud rate generator

Figure 5-7. Serial Interface Channel 2 Block Diagram

6. INTERRUPT FUNCTIONS

Interrupt functions include three types and thirteen sources as shown below.

- Non-maskable : 1
- Maskable : 11
- Software : 1

Table 6-1	. List	of Interr	upt Sources
-----------	--------	-----------	-------------

Interrupt	Note 1 Default		Interrupt Source	Internal/	Vector Table	Basic Configuration
Туре	Priority	Name	Trigger	External	Address	Type
Non- maskable	_	INTWDT	Overflow of watchdog timer (when the watchdog timer mode 1 is selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Overflow of watchdog timer (when the interval timer mode is selected)			(B)
	1	INTP1	Pin input edge detection	External	0008H	(C)
	2	INTP2			000AH	
	3	INTP3			000CH	
	4 INTSER		Occurrence of serial interface channel 2 UART reception error	Internal	0018H	(B)
	5	INTSR	Completion of serial interface channel 2 UART reception		001AH	
		INTCSI2	Completion of serial interface channel 2 3-wire transfer			
	6	INTST	Completion of serial interface channel 2 UART transmission		001CH	
	7	INTAD	Completion of A/D conversion		0028H	
	8 INTTM5		Generation of matching signal of 8-bit timer/event counter 5		002AH	
	9	INTTM6	Generation of matching signal of 8-bit timer/event counter 6		002CH	
Software	_	BRK	Execution of BRK instruction	—	003EH	(D)

Notes 1. Default priority is the priority order when several maskable interrupt requests are generated at the same time. 0 is the highest order and 9 is the lowest order.

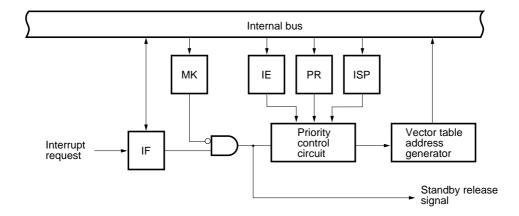
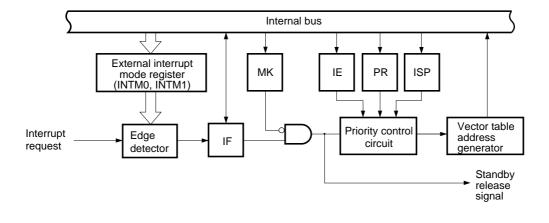
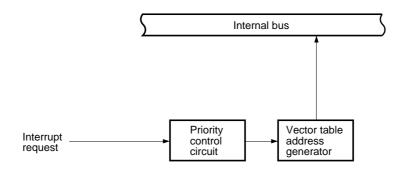

2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 6-1.

Figure 6-1. Interrupt Function Basic Configuration (1/2)


(A) Internal non-maskable interrupt

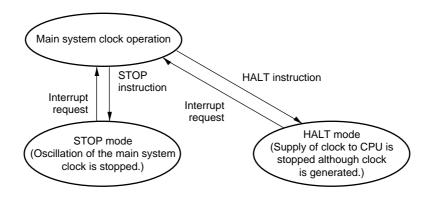
(B) Internal maskable interrupt



(C) External maskable interrupt

Figure 6-1. Interrupt Function Basic Configuration (2/2)

(D) Software interrupt


- IF : Interrupt request flag
- IE : Interrupt enable flag
- ISP : In-service priority flag
- MK : Interrupt mask flag
- PR : Priority specification flag

7. STANDBY FUNCTION

The standby function intends to reduce current consumption. It has the following two modes:

- HALT mode : In this mode, the CPU operation clock is stopped. The average current consumption can be reduced by intermittent operation by combining this mode with the normal operation mode.
- STOP mode : In this mode, oscillation of the main system clock is stopped. All the operations performed on the main system clock are suspended, and power consumption becomes extremely small.

8. RESET FUNCTION

There are the following two reset methods.

- External reset by RESET pin
- Internal reset by watchdog timer runaway time detection

9. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

2nd Operand			r ^{Note}				DOW			[HL + byte]			
1st Operand	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + B] [HL + C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD ADDC SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
В, С											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											

Note Except r = A

2nd Operand	#byte	A	r	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL + byte] [HL + B]	\$addr16	1	None
1st Operand										[HL + C]			
[HL]		MOV											ROR4
													ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
Х													MULU
С													DIVUW

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

2nd Operand 1st Operand	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
AX	ADDW SUBW CMPW		MOVW XCHW	MOVW	MOVW	MOVW	MOVW	
rp	MOVW	MOVW ^{Note}						INCW DECW PUSH POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, HL

(3) Bit manipulation instructions

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

2nd Operand 1st Operand	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
A.bit						MOV1	BT BF BTCLR	SET1 CLR1
sfr.bit						MOV1	BT BF BTCLR	SET1 CLR1
saddr.bit						MOV1	BT BF BTCLR	SET1 CLR1
PSW.bit						MOV1	BT BF BTCLR	SET1 CLR1
[HL].bit						MOV1	BT BF BTCLR	SET1 CLR1
СҮ	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1	MOV1 AND1 OR1 XOR1			SET1 CLR1 NOT1

(4) Call instructions/Branch instructions

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ

2nd Operand 1st Operand	AX	!addr16	!addr11	[addr5]	\$addr16
Basic instruction	BR	CALL BR	CALLF	CALLT	BR BC BNC BZ BNZ
Compound instruction					BT BF BTCLR DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

10. ELECTRICAL SPECIFICATIONS

• Electrical specifications of µPD78081(A) and 78082(A) (1/11)

Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

Parameter	Symbol	Test C	onditions		Ratings	Unit
Supply voltage	Vdd				-0.3 to +7.0	V
	AVdd				-0.3 to Vpp + 0.3	V
	AVREF				-0.3 to Vpp + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	Vı				-0.3 to V _{DD} + 0.3	V
Output voltage	Vo				-0.3 to V _{DD} + 0.3	V
Analog input voltage	Van	P10 to P17	ut pins	AVss - 0.3 to AVREF + 0.3	V	
Output current, high			-10	mA		
		Total of P10 to P17, P5	0 to P54, P	70 to P72,	-15	mA
		P100, P101				
		Total of P01 to P03, P30) to P37, P5	5 to P57	-15	mA
Output current, low	OL Note	Per pin		Peak value	30	mA
				r.m.s. value	15	mA
		Total of P50 to P54		Peak value	100	mA
				r.m.s. value	70	mA
		Total of P55 to P57		Peak value	100	mA
				r.m.s. value	70	mA
		Total of P10 to P17, P7	0 to P72,	Peak value	50	mA
		P100, P101		r.m.s. value	20	mA
		Total of P01 to P03, P3	0 to P37	Peak value	50	mA
				r.m.s. value	20	mA
Operating ambient temperature	TA				-40 to +85	°C
Storage temperature	Tstg				-65 to +150	°C

Note The r.m.s. value should be calculated as follows: [r.m.s. value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution If the absolute maximum rating of even one of the above parameters is exceeded, the quality of the product may be degraded. The absolute maximum ratings are therefore the rated values that may, if exceeded, physically damage the product. Be sure to use the product with all the absolute maximum ratings observed.

Capacitance ($T_A = 25^{\circ}C$, $V_{DD} = V_{SS} = 0 V$)

Parameter	Symbol	Test Conditions			TYP.	MAX.	Unit
Input capacitance	CIN	f = 1 MHz, Unmeasured pins returned to 0 V.				15	pF
I/O capacitance	Сю	f = 1 MHz, P01 to P03, P10 to P17, P30 to				15	рF
		Unmeasured pins	Unmeasured pins P37, P50 to P57, P70 to P72,				
		returned to 0 V.					

Remark Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

• Electrical specifications of µPD78081(A) and 78082(A) (2/11)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Ceramic	LIC X2 X1	Oscillation frequency	VDD = Oscillation voltage	1.0		5.0	MHz
resonator	│	(fx) ^{Note 1}	range				
		Oscillation stabilization	After VDD came to MIN.			4	ms
	· · · · · · · · · · · · · ·	time Note 2	of oscillation voltage range				
Crystal	IC X2 X1	Oscillation frequency		1.0		5.0	MHz
resonator	│	(fx) ^{Note 1}					
		Oscillation stabilization	VDD = 4.5 to 5.5 V			10	ms
	·	time Note 2				30	
External clock	X2 X1	X1 input frequency		1.0		5.0	MHz
		(fx) ^{Note 1}					
		X1 input high-/low-level		85		500	ns
		widths (txн, txL)					

Main System Clock Oscillator Characteristics (TA = -40 to $+85^{\circ}$ C, VDD = 1.8 to 5.5 V)

- Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.
 2. Time required for oscillation to stabilize after a reset or the STOP mode has been released.
 - _____

Caution When using the oscillation circuit of the main system clock, wire the portion enclosed in broken lines in the figures as follows to avoid adverse influence on the wiring capacitance:

- Keep the wiring length as short as possible.
- Do not cross the wiring over other signal lines.
- Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss.
- Do not connect the ground pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

• Electrical specifications of μ PD78081(A) and 78082(A) (3/11)

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Co	onditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P30 to	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0.7 Vdd		Vdd	V
		P32, P35 to P37, P50					
		to P57, P71		0.8 Vdd		Vdd	V
	VIH2	P00 to P03, P33, P34,	V_{DD} = 2.7 to 5.5 V	0.8 Vdd		Vdd	V
		P70, P72, P100, P101,					
		RESET		0.85 Vdd		Vdd	V
	Vінз	X1, X2	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	Vdd - 0.5		Vdd	V
				Vdd - 0.2		Vdd	V
Input voltage, low	VIL1	P10 to P17, P30 to	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.3 Vdd	V
		P32, P35 to P37, P50		-			
		to P57, P71		0		0.2 Vdd	V
	VIL2	P00 to P03, P33, P34,	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.2 Vdd	V
		P70, P72, P100,					
		P101, RESET		0		0.15 Vdd	V
	VIL3	X1, X2	$V_{DD} = 2.7 \text{ to } 5.5 \text{ V}$	0		0.4	V
				0		0.2	V
Output voltage, high	Vон	V _{DD} = 4.5 to 5.5 V, I _{OH} = -1 mA Vi		Vdd - 1.0			V
		Іон = -100 <i>µ</i> А	Vdd - 0.5			V	
Output voltage, low	Vol	P50 to P57	$V_{DD} = 2.0$ to 4.5 V,			0.8	V
			lo∟ = 10 mA				
			VDD = 4.5 to 5.5 V,		0.4	2.0	V
			lo∟ = 15 mA				
		P01 to P03, P10 to	VDD = 4.5 to 5.5 V,			0.4	V
		P17, P30 to P37, P70	lo∟ = 1.6 mA				
		to P72, P100, P101	IoL = 400 μA			0.5	V
Input leak current, high	ILIH1	Vin = Vdd	P00 to P03, P10 to P17,			3	μA
			P30 to P37, P50 to P57,				
			P70 to P72, P100,				
			P101, RESET				
	LIH2		X1, X2			20	μA
Input leak current, low	LIL1	$V_{IN} = 0 V$	P00 to P03, P10 to P17,			-3	μA
			P30 to P37, P50 to P57,				
			P70 to P72, P100,				
			P101, RESET				
	ILIL2		X1, X2			-20	μΑ
Output leak current, high	Ігон	Vout = Vdd				3	μΑ
Output leak current, low	Ilol	Vout = 0 V				-3	μΑ
Software pull-up resistance	R	$V_{IN} = 0 V$	P01 to P03, P10 to P17,	15	40	90	kΩ
			P30 to P37, P50 to P57,				
			P70 to P72, P100,				
			P101				

Remark Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

• Electrical specifications of μ PD78081(A) and 78082(A) (4/11)

Parameter	Symbol	Test	Conditions	MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	5.0-MHz crystal oscil-	$V_{DD} = 5.0 \text{ V} \pm 10\%$ Note 4		4.5	13.5	mA
		lation operating mode	$V_{DD} = 3.0 \text{ V} \pm 10\%$ Note 5		0.7	2.1	mA
		(fxx = 2.5 MHz) Note 2	$V_{DD} = 2.0 \ V \pm 10\% \ ^{Note 5}$		0.4	1.2	mA
		5.0-MHz crystal oscil-	$V_{DD} = 5.0 \text{ V} \pm 10\%$ Note 4		8.0	24.0	mA
		lation operating mode	$V_{DD} = 3.0 \text{ V} \pm 10\%$ Note 5		0.9	2.7	mA
		(fxx = 5.0 MHz) Note 3					
	IDD2	5.0-MHz crystal oscil-	Vdd = 5.0 V ±10%		1.4	4.2	mA
		lation HALT mode	VDD = 3.0 V ±10%		0.5	1.5	mA
		(fxx = 2.5 MHz) Note 2	VDD = 2.0 V ±10%		280	840	μA
		5.0-MHz crystal oscil-	Vdd = 5.0 V ±10%		1.6	4.8	mA
		lation HALT mode	VDD = 3.0 V ±10%		0.65	1.95	mA
		(fxx = 5.0 MHz) Note 3					
	Іррз	STOP mode	Vdd = 5.0 V ±10%		0.1	30	μA
			VDD = 3.0 V ±10%		0.05	10	μΑ
			VDD = 2.0 V ±10%		0.05	10	μA

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Notes 1. Not including AVREF and AVDD currents or port currents (including current flowing into on-chip pull-up resistors).

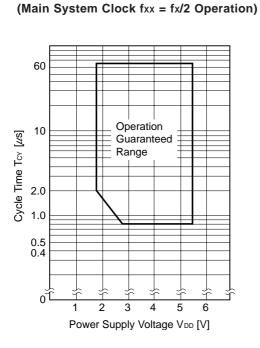
- **2.** fxx = fx/2 operation (when oscillation mode selection register (OSMS) is set to 00H).
- **3.** $f_{XX} = f_X$ operation (when oscillation mode selection register (OSMS) is set to 01H).
- 4. High-speed mode operation (when processor clock control register (PCC) is set to 00H).
- 5. Low-speed mode operation (when processor clock control register (PCC) is set to 04H).

Remark fxx : Main system clock frequency (fx or fx/2)

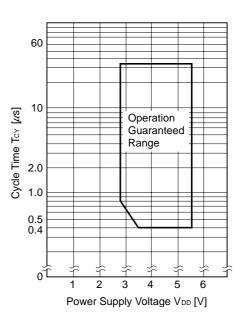
fx : Main system clock oscillation frequency

• Electrical specifications of µPD78081(A) and 78082(A) (5/11)

AC Characteristics


(1) Basic Operation (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
Cycle time	Тсү	$f_{XX} = f_X/2$ Note 1	VDD = 2.7 to 5.5 V	0.8		64	μs
(minimum instruction execution				2.0		64	μs
time)		$f_{XX} = f_X^{Note 2}$	$3.5~V \leq V_{\text{DD}} \leq 5.5~V$	0.4		32	μs
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 3.5 \text{ V}$	0.8		32	μs
TI5, TI6	fтı	V _{DD} = 4.5 to 5.5 V		0		4	MHz
input frequency				0		275	kHz
TI5, TI6 input high-/	tтıн,	V _{DD} = 4.5 to 5.5	V	100			ns
low-level widths	t⊤ı∟			1.8			μs
Interrupt request input high-/	tinth,	V _{DD} = 2.7 to 5.5	V	10			μs
low-level widths	t intl			20			μs
RESET low-level width	t RSL	V _{DD} = 2.7 to 5.5	V	10			μs
				20			μs


Notes 1. When oscillation mode selection register (OSMS) is set to 00H.

TCY VS VDD

- 2. When OSMS is set to 01H.
- **Remark** fxx : Main system clock frequency (fx or fx/2) fx : Main system clock oscillation frequency

Tcy vs VDD (Main System Clock fxx = fx Operation)

- Electrical specifications of μ PD78081(A) and 78082(A) (6/11)
- (2) Serial Interface (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 1.8 to 5.5 V)
 - (a) 3-wire serial I/O mode (SCK2... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkcy1	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7~V \leq V_{\text{DD}} < 4.5~V$	1,600			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	3,200			ns
			4,800			ns
SCK2 high-/low-level	tкн1, tкL1	V _{DD} = 4.5 to 5.5 V	tксү1/2 – 50			ns
widths			tксү1/2 – 100			ns
SI2 setup time	tsik1	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	100			ns
(to SCK2↑)		$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.5~\text{V}$	150			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	300			ns
			400			ns
SI2 hold time	tksi1		400			ns
(from SCK2↑)						
SO2 output delay time from $\overline{\text{SCK2}}\downarrow$	tkso1	C = 100 pF ^{Note}			300	ns

Note C is the load capacitance of $\overline{SCK2}$ and SO2 output lines.

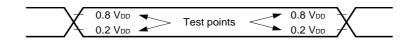
(h)	3-wire	serial	I/O mo	ode (<mark>S</mark>	CK2	External	clock	innut)
(u)	2-MILE	Serial	<i>// / / / / / / / / / / / / / / / / / /</i>	Jue (J	GN2	LALCINAI	CIUCK	mputy

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	t ксү2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	800			ns
		$2.7 V \le V_{DD} < 4.5$	5 V	1,600			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	3,200			ns
				4,800			ns
SCK2 high-/low-level	tkh2, tkl2	$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5$	5 V	400			ns
widths		$2.7 V \le V_{DD} < 4.5$	5 V	800			ns
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7$	7 V	1,600			ns
				2,400			ns
SI2 setup time	tsik2	V _{DD} = 2.0 to 5.5	V	100			ns
(to SCK2 [↑])				150			ns
SI2 hold time	tksi2			400			ns
(from SCK2↑)							
SO2 output delay time	tkso2	C = 100 pF Note	V _{DD} = 2.0 to 5.5 V			300	ns
from $\overline{\text{SCK2}}\downarrow$						500	ns
SCK2 rise/fall time	tr2, tr2					1,000	ns

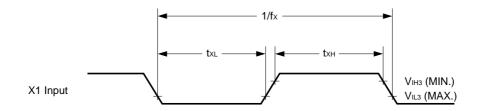
Note C is the load capacitance of SO2 output line.

• Electrical specifications of μ PD78081(A) and 78082(A) (7/11)

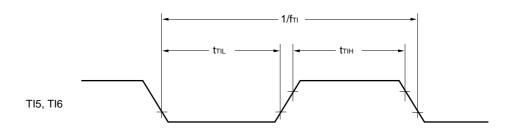
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		$4.5 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			78,125	bps
		$2.7~V \leq V_{\text{DD}} < 4.5~V$			39,063	bps
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			19,531	bps
					9,766	bps


(c) UART mode (Dedicated baud rate generator output)

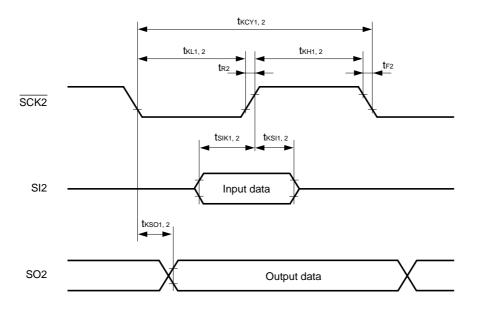
(d) UART mode (External clock input)

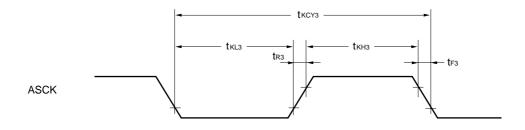

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	800			ns
		$2.7~V \leq V_{\text{DD}} < 4.5~V$	1,600			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	3,200			ns
			4,800			ns
ASCK high-/low-level	tкнз, tкLз	$4.5~V \leq V_{\text{DD}} \leq 5.5~V$	400			ns
widths		$2.7~V \leq V_{\text{DD}} < 4.5~V$	800			ns
		$2.0~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	1,600			ns
			2,400			ns
Transfer rate		$4.5~V \leq V_{\text{DD}} \leq 5.5~V$			39,063	bps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.5 \text{ V}$			19,531	bps
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			9,766	bps
					6,510	bps
ASCK rise/fall time	trs, trs				1,000	ns

• Electrical specifications of µPD78081(A) and 78082(A) (8/11)


AC Timing Test Points (excluding X1 Input)

Clock Timing


TI Timing


• Electrical specifications of µPD78081(A) and 78082(A) (9/11)

Serial Transfer Timing

3-wire serial I/O mode :

UART mode (external clock input) :

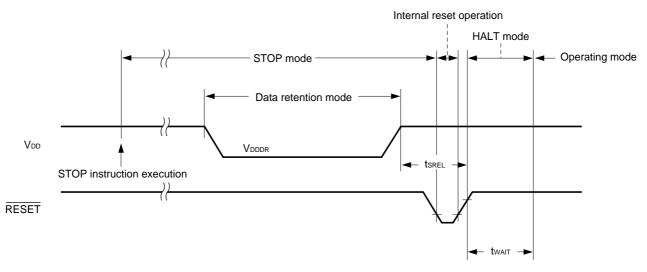
A/D Converter Characteristics (T_A = -40 to +85°C, AV_{DD} = V_{DD} = 1.8 to 5.5 V, AV_{SS} = V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		$2.7 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{AV}_{\text{DD}}$			0.6	%
		$1.8 \text{ V} \leq \text{AV}_{\text{REF}} < 2.7 \text{ V}$			1.4	%
Conversion time	tconv	$2.0 \text{ V} \leq AV_{\text{DD}} \leq 5.5 \text{ V}$	19.1		200	μs
		$1.8 \text{ V} \leq \text{AV}_{\text{DD}} < 2.0 \text{ V}$	38.2		200	μs
Sampling time	t SAMP		12/fxx			μs
Analog input voltage	VIAN		AVss		AVREF	V
Reference voltage	AVREF		1.8		AVdd	V
Resistance between AVREF and AVSS	RAIREF		4	14		kΩ

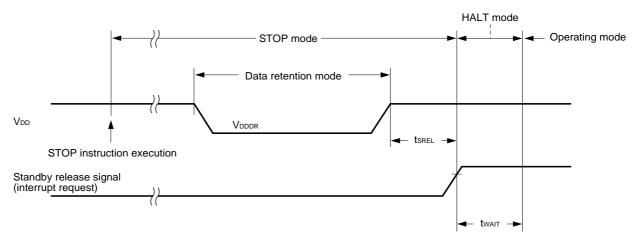
Note Overall error excluding quantization error (±1/2LSB). It is indicated as a ratio to the full-scale value.

Remark fxx : Main system clock frequency (fx or fx/2) fx : Main system clock oscillation frequency • Electrical specifications of μ PD78081(A) and 78082(A) (10/11)

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +85°C)

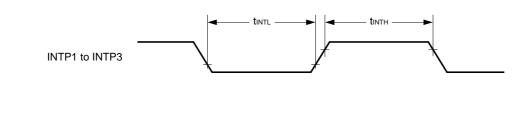

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		1.8		5.5	V
Data retention power supply current	Idddr	VDDDR = 1.8 V		0.1	10	μA
Release signal set time	t srel		0			μs
Oscillation stabilization	t wait	Release by RESET		217/fx		ms
wait time		Release by interrupt request		Note		ms

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of 2¹²/fxx and 2¹⁴/fxx to 2¹⁷/fxx is possible.

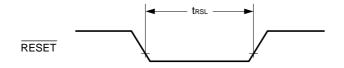

Remark fxx : Main system clock frequency (fx or fx/2)

fx : Main system clock oscillation frequency

Data Retention Timing (STOP mode release by RESET)



Data Retention Timing (Standby release signal: STOP mode release by interrupt request signal)



• Electrical specifications of $\mu \text{PD78081(A)}$ and 78082(A) (11/11)

Interrupt Request Input Timing

RESET Input Timing

• Electrical specifications of µPD78081(A2) (1/10)

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbol	Test C	onditions		Ratings	Unit
Supply voltage	Vdd				-0.3 to +7.0	V
	AVDD				-0.3 to Vpd + 0.3	V
	AVREF				-0.3 to Vpd + 0.3	V
	AVss				-0.3 to +0.3	V
Input voltage	Vi				-0.3 to VDD + 0.3	V
Output voltage	Vo				-0.3 to VDD + 0.3	V
Analog input voltage	Van	P10 to P17	Analog inp	out pins	AVss - 0.3 to AVREF + 0.3	V
Output current, high	Іон	Per pin			-10	mA
		Total of P10 to P17, P5) to P54, P	70 to P72,	-15	mA
		P100, P101				
		Total of P01 to P03, P30) to P37, P8	55 to P57	-15	mA
Output current, low		Per pin		Peak value	30	mA
				r.m.s. value	15	mA
		Total of P50 to P54		Peak value	100	mA
				r.m.s. value	70	mA
		Total of P55 to P57		Peak value	100	mA
				r.m.s. value	70	mA
		Total of P10 to P17, P7) to P72,	Peak value	50	mA
		P100, P101		r.m.s. value	20	mA
		Total of P01 to P03, P3) to P37	Peak value	50	mA
				r.m.s. value	20	mA
Operating ambient temperature	TA				-40 to +125	°C
Storage temperature	Tstg				-65 to +150	°C

Note The r.m.s. value should be calculated as follows: [r.m.s. value] = [Peak value] $\times \sqrt{\text{Duty}}$

Caution If the absolute maximum rating of even one of the above parameters is exceeded, the quality of the product may be degraded. The absolute maximum ratings are therefore the rated values that may, if exceeded, physically damage the product. Be sure to use the product with all the absolute maximum ratings observed.

Permissible Pin Sink Current Characteristics with Overvoltage Applied

Pending

Capacitance (T_A = 25° C, V_{DD} = V_{SS} = 0 V)

Parameter	Symbol	Т	Test Conditions			MAX.	Unit
Input capacitance	CIN	f = 1 MHz, Unmeasu	= 1 MHz, Unmeasured pins returned to 0 V.			15	pF
I/O capacitance	Сю	f = 1 MHz,	P01 to P03, P10 to P17, P30 to			15	pF
		Unmeasured pins	P37, P50 to P57, P70 to P72,				
		returned to 0 V.	P100, P101				

Remark Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

• Electrical specifications of µPD78081(A2) (2/10)

Resonator	Recommended Circuit	Parameter	Test Conditions	MIN.	TYP.	MAX.	Unit
Crystal resonator	onator	Oscillation frequency (fx) Note 1		1.0		7.0	MHz
		Oscillation stabilization time Note 2				10	ms
External clock		X1 input frequency (fx) Note 1		1.0		7.0	MHz
	μPD74HCU04 ▲	X1 input high-/low-level widths (txH, txL)		64		500	ns

Main System Clock Oscillator Characteristics (TA = -40 to +125°C, V_{DD} = 5 V \pm 10%)

Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.

- 2. Time required for oscillation to stabilize after a reset or the STOP mode has been released.
- Caution When using the oscillation circuit of the main system clock, wire the portion enclosed in broken lines in the figure as follows to avoid adverse influence on the wiring capacitance:
 - Keep the wiring length as short as possible.
 - Do not cross the wiring over other signal lines.
 - Do not route the wiring in the vicinity of lines through which a high fluctuating current flows.
 - Always keep the ground point of the capacitor of the oscillation circuit at the same potential as Vss.
 - Do not connect the ground pattern through which a high current flows.
 - Do not extract signals from the oscillation circuit.

• Electrical specifications of µPD78081(A2) (3/10)

DC Characteristics (T_A = -40 to +125°C, V_{DD} = 5 V \pm 10%)

Parameter	Symbol	Test Co	nditions	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P10 to P17, P30 to P32	, P35 to P37, P50 to	0.7 Vdd		Vdd	V
		P57					
	VIH2	P00 to P03, P33, P34,	P70 to P72, P100,	0.9 Vdd		Vdd	V
		P101, RESET					
	Vінз	X1, X2		Vdd - 0.2		Vdd	V
Input voltage, low	VIL1	P10 to P17, P30 to P32	, P35 to P37, P50 to	0		0.3 Vdd	V
		P57					
	V _{IL2}	P00 to P03, P33, P34,	P00 to P03, P33, P34, P70 to P72, P100, P101, RESET			0.16 Vdd	V
		P101, RESET					
	VIL3	X1, X2		0		0.4	V
Output voltage, high	Vон	Іон = -1 mA		Vdd - 1.0			V
		Іон = -100 <i>µ</i> А		Vdd - 0.5			V
Output voltage, low	Vol	P50 to P57	IoL = 15 mA		0.4	2.2	V
		P01 to P03, P10 to	IoL = 1.6 mA			0.45	V
		P17, P30 to P37, P70	Iol = 400 μA			0.5	V
		to P72, P100, P101					
Input leak current, high	Іцн1	Vin = Vdd	P00 to P03, P10 to P17,			10	V
			P30 to P37, P50 to P57,				
			P70 to P72, P100,				
			P101, RESET				
	ILIH2		X1, X2			20	μΑ
Input leak current, low	LIL1	$V_{IN} = 0 V$	P00 to P03, P10 to P17,			-10	μΑ
			P30 to P37, P50 to P57,				
			P70 to P72, P100,				
			P101, RESET				
	ILIL2		X1, X2			-20	μΑ
Output leak current, high	Ігон	Vout = Vdd				10	μΑ
Output leak current, low	Ilol	Vout = 0 V				-10	μΑ
Software pull-up resistance	R	$V_{IN} = 0 V$	P01 to P03, P10 to P17,	15	40	120	kΩ
			P30 to P37, P50 to P57,				
			P70 to P72, P100,				
			P101				
Supply current Note 1	IDD1	7.0-MHz crystal oscilla	tion operating mode		9.0	29.0	mA
		(fxx = 3.5 MHz) Notes 2, 3					
		5.0-MHz crystal oscilla	tion operating mode		5.5	16.5	mA
		(fxx = 2.5 MHz) Notes 2, 3					
	IDD2	7.0-MHz crystal oscilla	tion HALT mode		1.5	7.2	mA
		$(fxx = 3.5 \text{ MHz})^{\text{Note 2}}$					
		5.0-MHz crystal oscilla	tion HALT mode		1.2	6.5	mA
		(fxx = 2.5 MHz) Note 2					
	Іддз	STOP mode			0.1	1,000	μA

 $Notes \ 1. \ Not including \ AV_{\text{REF}} \ and \ AV_{\text{DD}} \ currents \ or \ port \ currents \ (including \ current \ flowing \ into \ on-chip \ pull-up \ resistors).$

2. $f_{xx} = f_{x/2}$ operation (when oscillation mode selection register (OSMS) is set to 00H).

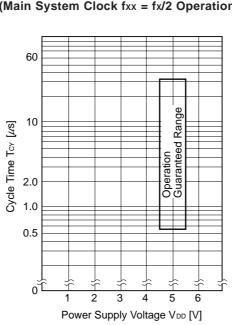
3. High-speed mode operation (when processor clock control register (PCC) is set to 00H).

Remarks 1. fxx : Main system clock frequency (fx or fx/2)

- 2. fx : Main system clock oscillation frequency
- 3. Unless otherwise specified, alternate-function pin characteristics are the same as port pin characteristics.

• Electrical specifications of µPD78081(A2) (4/10)

AC Characteristics


(1) Basic Operation (T_A = -40 to +125°C, V_{DD} = 5 V \pm 10%)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Cycle time (minimum	Тсү	$f_{XX} = f_X/2$ Note	0.57		32	μs
instruction execution time)						
TI5, TI6 input frequency	fтı		0		2	kHz
TI5, TI6 input high-/	t⊤iн, t⊤i∟		200			ns
low-level widths						
Interrupt request input high-/	tinth, tintl		10			μs
low-level widths						
RESET low-level width	trsl		10			μs

Note When oscillation mode selection register (OSMS) is set to 00H.

Remark fxx : Main system clock frequency (fx or fx/2)

fx : Main system clock oscillation frequency

Tcy vs VDD (Main System Clock fxx = fx/2 Operation)

- Electrical specifications of µPD78081(A2) (5/10)
- (2) Serial Interface (T_A = -40 to +125°C, V_{DD} = 5 V \pm 10%)

(a) 3-wire serial I/O mode (SCK2... Internal clock output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkcy1		1,000			ns
SCK2 high-/low-level	tĸнı, tĸ∟ı		tксу1/2 − 100			ns
widths						
SI2 setup time	tsik1		150			ns
(to SCK2↑)						
SI2 hold time	tksi1		500			ns
(from SCK2↑)						
SO2 output delay time	tkso1	C = 100 pF ^{Note}			400	ns
from SCK2↓						

Note C is the load capacitance of $\overline{SCK2}$ and SO2 output lines.

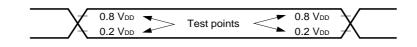
(b) 3-wire serial I/O mode (SCK2... External clock input)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK2 cycle time	tkCY2		1,000			ns
SCK2 high-/low-level	tkh2, tkl2		500			ns
widths						
SI2 setup time	tsik2		150			ns
(to SCK2↑)						
SI2 hold time	tksi2		500			ns
(from SCK2↑)						
SO2 output delay time	tkso2	C = 100 pF ^{Note}			400	ns
from $\overline{\text{SCK2}}\downarrow$						
SCK2 rise/fall time	tr2, tr2				1,000	ns

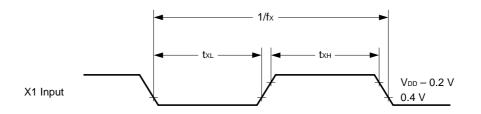
Note C is the load capacitance of SO2 output line.

• Electrical specifications of µPD78081(A2) (6/10)

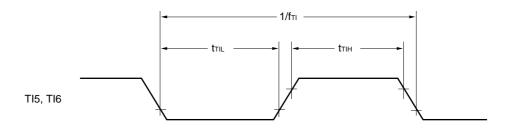
(c) UART mode (Dedicated baud rate generator output)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					76,923	bps

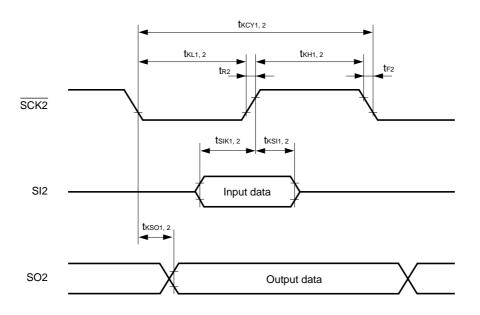
(d) UART mode (External clock input)

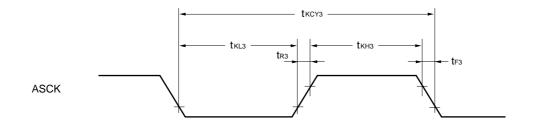

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
ASCK cycle time	tксүз		1,000			ns
ASCK high-/low-level	tĸнз, tĸ∟з		500			ns
widths						
Transfer rate					38,462	bps
ASCK rise/fall time	trs, trs				1,000	ns

• Electrical specifications of µPD78081(A2) (7/10)


AC Timing Test Points (excluding X1 Input)

Clock Timing


TI Timing


- NEC
- Electrical specifications of µPD78081(A2) (8/10)

Serial Transfer Timing

3-wire serial I/O mode :

UART mode (external clock input) :

A/D Converter Characteristics (T_A = -40 to +125°C, AV_{DD} = V_{DD} = 5 V \pm 10%, AV_{SS} = V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			8	8	8	bit
Overall error Note		$4.5 \text{ V} \leq \text{AV}_{\text{REF}} \leq \text{AV}_{\text{DD}}$			1.0	%
Conversion time	t CONV		23.8		100	μs
Sampling time	t SAMP		12/fxx			μs
Analog input voltage	Vian		AVss		AVref	V
Reference voltage	AVREF		4.5		AVdd	V
Resistance between AVREF and AVss	RAIREF		4	14		kΩ

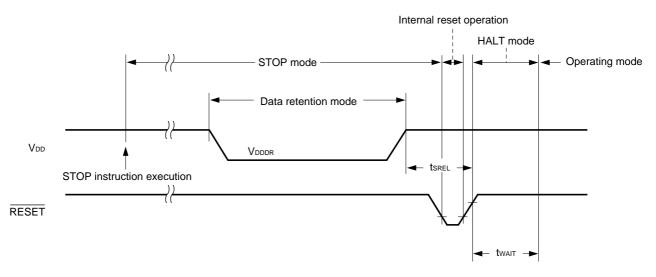
Note Overall error excluding quantization error ($\pm 1/2$ LSB). It is indicated as a ratio to the full-scale value.

Remark fxx : Main system clock frequency (fx or fx/2)

fx : Main system clock oscillation frequency

• Electrical specifications of µPD78081(A2) (9/10)

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (T_A = -40 to +125°C)

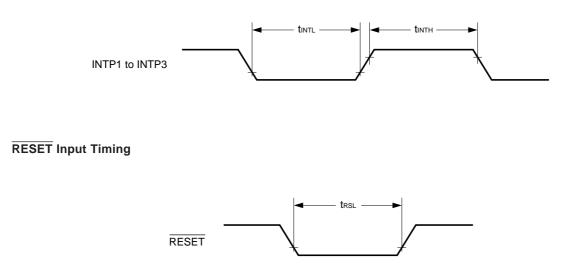

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention power supply voltage	Vdddr		4.5		5.5	V
Data retention power supply current	Idddr	$V_{DDDR} = 4.5 V$		0.1	1,000	μA
Release signal set time	t SREL		0			μs
Oscillation stabilization	twait	Release by RESET		217/fx		ms
wait time		Release by interrupt request		Note		ms

Note In combination with bits 0 to 2 (OSTS0 to OSTS2) of oscillation stabilization time select register (OSTS), selection of 2¹²/fxx and 2¹⁴/fxx to 2¹⁷/fxx is possible.

Remark fxx: Main system clock frequency (fx or fx/2)

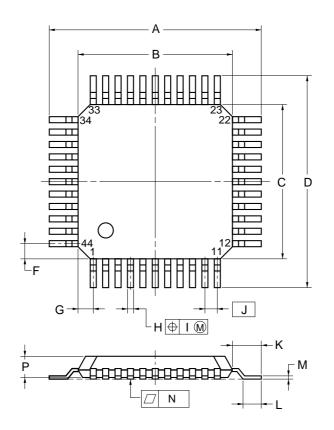
 $f \boldsymbol{x} \ :$ Main system clock oscillation frequency

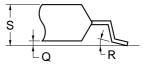
Data Retention Timing (STOP mode release by RESET)



Data Retention Timing (Standby release signal: STOP mode release by interrupt request signal)

• Electrical specifications of µPD78081(A2) (10/10)


Interrupt Request Input Timing

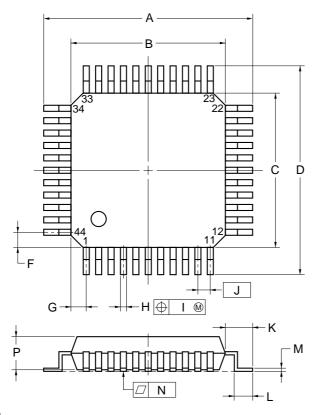

11. PACKAGE DRAWINGS

μPD78081GB(A)-×××-3B4, 78082GB(A)-×××-3B4, 78081GB(A2)-×××-3B4

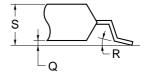
44 PIN PLASTIC QFP (□10)

detail of lead end

NOTE


Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

Remark The shape and material of ES versions are the same as those of mass-produced versions.


ITEM	MILLIMETERS	INCHES
А	13.6±0.4	$0.535^{+0.017}_{-0.016}$
В	10.0±0.2	$0.394^{+0.008}_{-0.009}$
С	10.0±0.2	$0.394^{+0.008}_{-0.009}$
D	13.6±0.4	0.535+0.017 -0.016
F	1.0	0.039
G	1.0	0.039
н	0.35±0.10	$0.014^{+0.004}_{-0.005}$
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P)
к	1.8±0.2	$0.071^{+0.008}_{-0.009}$
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$
М	$0.15_{-0.05}^{+0.10}$	$0.006^{+0.004}_{-0.003}$
Ν	0.10	0.004
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
R	5°±5°	5°±5°
S	3.0 MAX.	0.119 MAX.
		P44GB-80-3B4-3

μ PD78081GB(A)-×××-3BS-MTX, 78082GB(A)-×××-3BS-MTX

44 PIN PLASTIC QFP (\Box 10)

detail of lead end

NOTE

Each lead centerline is located within 0.16 mm (0.007 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES	
TIEW	MILLIMETERS		
А	13.2±0.2	$0.520^{+0.008}_{-0.009}$	
В	10.0±0.2	$0.394^{+0.008}_{-0.009}$	
С	10.0±0.2	$0.394^{+0.008}_{-0.009}$	
D	13.2±0.2	$0.520^{+0.008}_{-0.009}$	
F	1.0	0.039	
G	1.0	0.039	
Н	$0.37^{+0.08}_{-0.07}$	$0.015^{+0.003}_{-0.004}$	
I	0.16	0.007	
J	0.8 (T.P.)	0.031 (T.P.)	
К	1.6±0.2	0.063±0.008	
L	0.8±0.2	$0.031^{+0.009}_{-0.008}$	
М	$0.17^{+0.06}_{-0.05}$	$0.007^{+0.002}_{-0.003}$	
N	0.10	0.004	
Р	2.7	0.106	
Q	0.125±0.075	0.005±0.003	
R	3°+7° -3°	3°+7° -3°	
S	3.0 MAX.	0.119 MAX.	
		S44GB-80-3BS	

12. RECOMMENDED SOLDERING CONDITIONS

 μ PD78081(A) and 78082(A) should be soldered and mounted under the conditions recommended in the table below.

For detail of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, consult our sales representative.

Table 12-1. Surface Mounting Type Soldering Conditions

µPD78081GB(A)-×××-3B4	:	44-pin plastic QFP (10 $ imes$ 10 mm)
µ PD78082GB(A)- ×××- 3B4	:	44-pin plastic QFP (10 $ imes$ 10 mm)
μ PD78081GB(A2)- ×××- 3B4	:	44-pin plastic QFP (10 $ imes$ 10 mm)

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: 235°C, Reflow time: 30 seconds or below (at 210°C or higher), Number of reflow processes: 3 max.	IR35-00-3
VPS	Package peak temperature: 215°C, Reflow time: 40 seconds or below (at 200°C or higher), Number of reflow processes: 3 max.	VP15-00-3
Wave soldering	Solder temperature: 260°C or below, Flow time: 10 seconds or below, Number of flow processes: once, Preheating temperature: 120°C or below (package surface temperature)	WS60-00-1
Pin partial heating	Pin temperature: 300°C or below, Time: 3 seconds or below (per device side)	

Cautions 1. Use of more than one soldering method should be avoided (except for the pin partial heating method).

2. Because production of the μPD78081GB(A)-×××-3BS-MTX and 78082GB(A)-×××-3BS-MTX is still in a planning stage, their soldering conditions are pending.

APPENDIX A. DEVELOPMENT TOOLS

The following development tools are available to support development of systems using the μ PD78081(A) and 78082(A).

Language Processing Software

RA78K/0 Notes 1, 2, 3, 4	Assembler package common to the 78K/0 Series
CC78K/0 Notes 1, 2, 3, 4	C compiler package common to the 78K/0 Series
DF78083 Notes 1, 2, 3, 4	Device file used for the μ PD78083 Subseries
CC78K/0-L Notes 1, 2, 3, 4	C compiler library source file common to the 78K/0 Series

PROM Writing Tools

PG-1500	PROM programmer
PA-78P083GB	Programmer adapter connected to the PG-1500
PG-1500 Controller Notes 1, 2	Control program for the PG-1500

Debugging Tools

IE-78000-R	In-circuit emulator common to the 78K/0 Series
IE-78000-R-A	In-circuit emulator common to the 78K/0 Series (for integrated debugger)
IE-78000-R-BK	Break board common to the 78K/0 Series
IE-78078-R-EM	Emulation board common to the μ PD78078 Subseries
EP-78083GB-R	Emulation probe for the μ PD78083 Subseries
EV-9200G-44	Socket mounted on the target system board prepared for 44-pin plastic QFP
SM78K0 Notes 5, 6, 7	System simulator common to the 78K/0 Series
ID78K0 Notes 4, 5, 6, 7	Integrated debugger for the IE-78000-R-A
SD78K/0 Notes 1, 2	Screen debugger for the IE-78000-R
DF78083 Notes 1, 2, 5, 6, 7	Device file used for the μ PD78083 Subseries

Notes 1. Based on PC-9800 Series (MS-DOS™)

- 2. Based on IBM PC/AT[™] and its compatibles (PC DOS[™]/IBM DOS[™]/MS-DOS)
- 3. Based on HP9000 Series 300[™] (HP-UX[™])
- Based on HP9000 Series 700[™] (HP-UX), SPARCstation[™] (SunOS[™]), and EWS4800 Series (EWS-UX/V)
- 5. Based on PC-9800 Series (MS-DOS + Windows™)
- 6. Based on IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS + Windows)
- 7. Based on NEWS[™] (NEWS-OS[™])
- Remarks 1. Please refer to the 78K/0 Series Selection Guide (U11126E) for information on the third party development tools.
 - 2. Use the RA78K/0, CC78K/0, SM78K0, ID78K0, and SD78K/0 in combination with the DF78083.

Real-Time OS

Fuzzy Inference Development Support System

FE9000 Note 1/FE9200 Note 5	Fuzzy knowledge data input tool
FT9080 Note 1/FT9085 Note 2	Translator
FI78K0 Notes 1, 2	Fuzzy inference module
FD78K0 Notes 1, 2	Fuzzy inference debugger

Notes 1. Based on PC-9800 Series (MS-DOS)

- 2. Based on IBM PC/AT and its compatibles (PC DOS/IBM DOS/MS-DOS)
- 3. Based on HP9000 Series 300 (HP-UX)
- 4. Based on HP9000 Series 700 (HP-UX), SPARCstation (SunOS), and EWS4800 Series (EWS-UX/V)
- 5. Based on IBM PC/AT (PC DOS/IBM DOS/MS-DOS + Windows)
- **Remark** Please refer to the **78K/0 Series Selection Guide (U11126E)** for information on the third party development tools.

APPENDIX B. RELATED DOCUMENTS

Documents Related to Devices

Document Name	Document No.	
	Japanese	English
μPD78083 Subseries User's Manual	U12176J	IEU-1407
μPD78081(A), 78082(A) Data Sheet	U12436J	This document
μPD78P083(A) Data Sheet	U12175J	U12175E
78K/0 Series User's Manual Instructions	U12326J	IEU-1372
78K/0 Series Instruction Table	U10903J	_
78K/0 Series Instruction Set	U10904J	—
µPD78083 Subseries Special Function Register Table	IEM-5599	—
78K/0 Series Application Note Fundamental (III)	IEA-767	U10182E

Documents Related to Development Tools (User's Manual) (1/2)

Document Name		Document No.	
		Japanese	English
RA78K Series Assembler Package	Operation	EEU-809	EEU-1399
	Language	EEU-815	EEU-1404
RA78K Series Structured Assembler Preprocessor	·	EEU-817	EEU-1402
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly Language	U11801J	U11801E
	Structured Assembly	U11789J	U11789E
	Language		
CC78K Series C Compiler	Operation	EEU-656	EEU-1280
	Language	EEU-655	EEU-1284
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K/0 C Compiler Application Note	Programming	EEA-618	EEA-1208
	Know-how		
CC78K Series Library Source File	•	U12322J	—
PG-1500 PROM Programmer		U11940J	EEU-1335
PG-1500 Controller PC-9800 Series (MS-DOS) Based		EEU-704	EEU-1291
PG-1500 Controller IBM PC Series (PC DOS) Based		EEU-5008	U10540E
IE-78000-R		U11376J	U11376E
IE-78000-R-A		U10057J	U10057E
IE-78000-R-BK		EEU-867	EEU-1427
IE-78078-R-EM		U10775J	U10775E
EP-78083		EEU-5003	EEU-1529
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External Part User Open	U10092J	U10092E
	Interface Specifications		
ID78K0 Integrated Debugger EWS Based	Reference	U11151J	
ID78K0 Integrated Debugger PC Based	Reference	U11539J	U11539E
ID78K0 Integrated Debugger Windows Based	Guide	U11649J	U11649E

Caution The contents of the documents listed above are subject to change without prior notice. Make sure to use the latest edition when starting design.

Documents Related to Development Tools (User's Manual) (2/2)

Document Name		Document No.	
		Japanese	English
SD78K/0 Screen Debugger	Introduction	EEU-852	U10539E
PC-9800 Series (MS-DOS) Based	Reference	U10952J	—
SD78K/0 Screen Debugger	Introduction	EEU-5024	EEU-1414
IBM PC/AT (PC DOS) Based	Reference	U11279J	U11279E

Documents Related to Embedded Software (User's Manual)

Document Name		Document No.	
		Japanese	English
78K/0 Series OS MX78K0	Basic	U12257J	—
Fuzzy Knowledge Data Input Tools		EEU-829	EEU-1438
78K/0, 78K/II, and 87AD Series Fuzzy Inference Development Support System		EEU-862	EEU-1444
Translator			
78K/0 Series Fuzzy Inference Development Support System		EEU-858	EEU-1441
Fuzzy Inference Module			
78K/0 Series Fuzzy Inference Development Support System		EEU-921	EEU-1458
Fuzzy Inference Debugger			

Other Documents

Document Name	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	_
Guide to Quality Assurance for Semiconductor Devices	C11893J	MEI-1202
Microcomputer Product Series Guide	U11416J	_

Caution The contents of the documents listed above are subject to change without prior notice. Make sure to use the latest edition when starting design.

NEC

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES-

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A.

Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

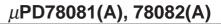
NEC Electronics (France) S.A. Spain Office

Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.


Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

FIP and IEBus are trademarks of NEC Corporation.

NEC

MS-DOS and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation. HP9000 Series 300, HP9000 Series 700, and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.